Contractility is the main determinant of coronary systolic flow impediment

1989 ◽  
Vol 257 (6) ◽  
pp. H1936-H1944 ◽  
Author(s):  
R. Krams ◽  
P. Sipkema ◽  
J. Zegers ◽  
N. Westerhof

We measured the relation between coronary flow amplitude (delta F = Fd-Fs; where d is diastolic and s is systolic) and developed left ventricular pressure (delta PLV = Ps-Pd) at a constant perfusion pressure of 75 mmHg (10 kPa) in the maximally vasodilated blood-perfused isolated cat heart for different steady-state levels of contractility (protocol A) and during transients in contractility (protocol B). Contractility was defined as the slope of the end-systolic pressure-volume relation (Emax). From protocol A it appeared that the coronary flow amplitude was only weakly related to left ventricular pressure at each steady-state level of contractility studied. However, the coronary flow amplitude was strongly related to the different levels of contractility. In protocol B, contractility was changed over a wide range of values (0-100%) but developed pressure and contractility changed simultaneously. Using multiple linear regression analysis, we found that contractility has approximately 10 times (range: 2.8-57.3) stronger effect than left ventricular pressure on coronary flow amplitude (n = 10 experiments). These data and our earlier observations suggest that it is the difference in stiffness of cardiac muscle between systole and diastole that determines coronary flow amplitude.

1989 ◽  
Vol 257 (5) ◽  
pp. H1471-H1479 ◽  
Author(s):  
R. Krams ◽  
P. Sipkema ◽  
N. Westerhof

We measured phasic arterial coronary inflow in the blood-perfused isolated cat heart (n = 5) with a balloon in the left ventricle under well-defined conditions, i.e., constant perfusion pressure, constant vasomotor tone (maximal vasodilation), and heart rate. The normalized amplitude (A) between systolic flow (Fs) and diastolic flow (Fd) [A = (Fd - Fs)/Fd] was related to systolic left ventricular pressure (Ps, range 1.6-17 kPa, 1 kPa = 7.5 mmHg) for different isovolumic beats obtained by changes in balloon volume and for low load isobarically ejecting beats (pressure 0.2 kPa). The data were fitted to A = a + bPs with a = 0.70 +/- 0.15 (SD) and b = 0.005 +/- 0.005 kPa-1. This relation indicates a very weak effect of left ventricular systolic pressure on normalized flow amplitude. Thus the hypothesis that left ventricular pressure is the sole determinant impeding coronary flow could not be confirmed. However, our data could be explained on basis of the time-varying elastance concept (H. Suga, K. Sagawa, and A. A. Shoukas. Circ. Res. 32: 314-322, 1973). The intravascular and luminal (cavity) compartments both are assumed to be subject to a time-varying elastance. The time-varying luminal elastance is similar for isovolumic and isobaric beats. We assume that the elastance of the vascular compartment also behaves the same for these beats, and therefore coronary flow is affected similarly.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingtao Na ◽  
Haifeng Jin ◽  
Xin Wang ◽  
Kan Huang ◽  
Shuang Sun ◽  
...  

Abstract Background Heart failure (HF) is a clinical syndrome characterized by left ventricular dysfunction or elevated intracardiac pressures. Research supports that microRNAs (miRs) participate in HF by regulating  targeted genes. Hence, the current study set out to study the role of HDAC3-medaited miR-18a in HF by targeting ADRB3. Methods Firstly, HF mouse models were established by ligation of the left coronary artery at the lower edge of the left atrial appendage, and HF cell models were generated in the cardiomyocytes, followed by ectopic expression and silencing experiments. Numerous parameters including left ventricular posterior wall dimension (LVPWD), interventricular septal dimension (IVSD), left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LEVDP), heart rate (HR), left ventricular pressure rise rate (+ dp/dt) and left ventricular pressure drop rate (-dp/dt) were measured in the mice. In addition, apoptosis in the mice was detected by means of TUNEL staining, while RT-qPCR and Western blot analysis were performed to detect miR-18a, HDAC3, ADRB3, cMyb, MMP-9, Collagen 1 and TGF-β1 expression patterns. Dual luciferase reporter assay validated the targeting relationship between ADRB3 and miR-18a. Cardiomyocyte apoptosis was determined by means of flow cytometry. Results HDAC3 and ADRB3 were up-regulated and miR-18a was down-regulated in HF mice and cardiomyocytes. In addition, HDAC3 could reduce the miR-18a expression, and ADRB3 was negatively-targeted by miR-18a. After down-regulation of HDAC3 or ADRB3 or over-expression of miR-18a, IVSD, LVEDD, LVESD and LEVDP were found to be decreased but LVPWD, LVEF, LVFS, LVSP, + dp/dt, and −dp/dt were all increased in the HF mice, whereas fibrosis, hypertrophy and apoptosis of HF cardiomyocytes were declined. Conclusion Collectively, our findings indicate that HDAC3 silencing confers protection against HF by inhibiting miR-18a-targeted ADRB3.


2003 ◽  
Vol 99 (2) ◽  
pp. 385-391 ◽  
Author(s):  
Leo G. Kevin ◽  
Peter Katz ◽  
Amadou K. S. Camara ◽  
Enis Novalija ◽  
Matthias L. Riess ◽  
...  

Background Anesthetic preconditioning (APC) is protective for several aspects of cardiac function and structure, including left ventricular pressure, coronary flow, and infarction. APC may be protective, however, only if the duration of ischemia is within a certain, as yet undefined range. Brief ischemia causes minimal injury, and APC would be expected to provide little benefit. Conversely, very prolonged ischemia would ultimately cause serious injury with or without APC. Previous investigations used a constant ischemic time as the independent variable to assess ischemia-induced changes in dependent functional and structural variables. The purpose of the study was to define the critical limits of efficacy of APC by varying ischemic time. Methods Guinea pig hearts (Langendorff preparation; n = 96) underwent pretreatment with sevoflurane (APC) or no treatment (control), before global ischemia and 120 min reperfusion. Ischemia durations were 20, 25, 30, 35, 40, and 45 min. Results At 120 min reperfusion, developed (systolic-diastolic) left ventricular pressure was increased by APC compared with control for ischemia durations of 25-40 min. Infarction was decreased by APC for ischemia durations of 25-40 min, but not 20 or 45 min. APC improved coronary flow and vasodilator responses for all ischemia durations longer than 25 min, and decreased ventricular fibrillation on reperfusion for ischemia durations longer than 30 min. Conclusions Although APC protects against vascular dysfunction and dysrhythmias after prolonged ischemia, protection against contractile dysfunction and infarction in this model is restricted to a range of ischemia durations of 25-40 min. These results suggest that APC may be effective in a subset of patients who have cardiac ischemia of intermediate duration.


Author(s):  
W.J. Du Plooy ◽  
P.J. Schutte ◽  
J. Still ◽  
L. Hay ◽  
C.P. Kahler

The stability of cardiodynamic and some blood parameters during a slow, continuous infusion of a combination of ketamine and diazepam is reported. Contractility (dP/dt), myocardial relaxation (Tln), left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), arterial blood pressure and certain blood parameters were assessed in 3 male and 3 female juvenile baboons (Papio ursinus). Anaesthesia was induced with 15 mg/kg ketamine IM and maintained with a continuous IV infusion (40-60 mℓ/h) of ketamine and diazepam. The mixture consisted of 2 mℓ ketamine (100 mg/mℓ), 2 mℓ diazepam (5 mg/mℓ) and 50 mℓ saline. A period of 75 + 10 min was allowed for preparation of the animals, after which lead II of the ECG, femoral artery blood pressure and left ventricular pressure were recorded at 15-min intervals for a period of 2 h: the total duration of anaesthesia was 195 min. Arterial blood samples were analysed at 30-min intervals for blood gases, electrolytes, glucose and insulin. Left ventricular parameters were derived from the left ventricular pressure curve. Tln, LVSP and LVEDP showed small fluctuations. Contractility decreased (p < 0.037) at the 195-min interval. No arrhythmias or ECG changes were seen, while blood pressure decreased gradually. Serum calcium concentration decreased and blood glucose levels increased gradually over time. Anaesthesia and analgesia were sufficient and no other drugs were necessary. The animals appeared sedated and dazed 60-80 min after the procedure. A continuous infusion of a combination of ketamine and diazepam for a duration of 150 min can provide stable anaesthesia for cardiodynamic measurements.


1965 ◽  
Vol 209 (3) ◽  
pp. 557-563 ◽  
Author(s):  
Thomas E. Driscol ◽  
Richard W. Eckstein

Left ventricular and aortic pressure pulses and the pressure gradient across the aortic valve were recorded in anesthetized and unanesthetized dogs. Aortic pressure recorded immediately above the valve increased 5–15 msec before it was exceeded by left ventricular pressure. The maximum systolic pressure gradient occurred in early systole and remained positive throughout the ejection period. When aortic pressure was recorded 1–3 cm distal to the valve, these pressure pulse relationships were altered so that 1) the rise in aortic pressure was delayed, 2) the early systolic maximum pressure gradient was increased, and 3) aortic pressure exceeded ventricular pressure during the latter half of systole. The changes in early systole are due to a delay in the pulse wave reaching the more distal recording site. The mean systolic pressure gradient between two sites within the ascend-ing aorta was found to be negative, i.e., opposite to the direction of forward flow. The negative pressure gradient probably accounts for the reversal of the transvalvular pressure gradient in late systole when aortic pressure was recorded distal to the valve.


1992 ◽  
Vol 77 (2) ◽  
pp. 397-400 ◽  
Author(s):  
D Gattullo ◽  
RJ Linden ◽  
G Losano ◽  
P Pagliaro ◽  
N Westerhof

1992 ◽  
Vol 262 (4) ◽  
pp. H965-H972 ◽  
Author(s):  
P. A. Gwirtz ◽  
J. M. Dodd-O ◽  
H. F. Downey ◽  
H. J. Mass ◽  
B. A. Barron ◽  
...  

Modulation of myocardial contractile function and perfusion by alpha 1-adrenergic receptors were examined in anesthetized dogs during left stellate ganglion stimulation. In 11 dogs, stellate stimulation significantly increased heart rate, mean arterial pressure, left ventricular systolic pressure, maximal rate of left ventricular pressure generation, segmental shortening and rate of shortening in anterior and posterior ventricular regions, and myocardial oxygen extraction. Myocardial lactate extraction decreased. The selective alpha 1-adrenergic antagonist prazosin (0.5 mg) injected into the circumflex artery during stellate stimulation caused significant additional increases in maximal rate of left ventricular pressure generation by 19 +/- 5% and in rate of shortening in posterior subendocardium by 20 +/- 6%. No changes were observed in posterior subepicardial or anterior subendocardial segmental contractile function. Myocardial oxygen and lactate extractions returned to their control values following prazosin injection. Regional left ventricular perfusion was measured using tracer microspheres in five additional dogs. Stellate stimulation increased subepicardial and subendocardial perfusion by 30%. Prazosin increased both subepicardial and subendocardial perfusion by an additional 36%. Stellate stimulation increased norepinephrine concentration in the coronary sinus, but no further increase was noted after blockage of alpha 1-receptors by prazosin. Thus, during sympathetic stimulation, an alpha 1-vasoconstriction existed uniformly across the left ventricular wall. However, blockade of this vasoconstriction was associated with an increase in contractile function only in the deeper muscle layers.


1992 ◽  
Vol 263 (4) ◽  
pp. H1250-H1261 ◽  
Author(s):  
T. Aoyagi ◽  
A. M. Fujii ◽  
S. D. Colan ◽  
M. F. Flanagan ◽  
I. Mirsky

The shortening- and shortening rate-preload-afterload relations, based on the concept of the myocardial end-systolic stress-strain relation (ESSSR), are a newly developed load- and size-independent assessment of myocardial contractility. The purpose of this study was to apply this assessment to compare extent and velocity of myocardial contraction during graded infusions of dobutamine. Seven chronically instrumented unsedated sheep were studied at rest and during graded infusions of dobutamine (2.5-20 micrograms.kg-1.min-1). The ESSSR were linear over a wide range of load alterations, whereas the end-systolic pressure-diameter relations (ESPDR) were generally nonlinear. Midwall shortening rate (SRm) at common preload and afterload representing contraction extent increased with each dose of dobutamine through 20 micrograms.kg-1.min-1. In contrast, midwall shortening (Sm) increased through dobutamine 5 micrograms.kg-1.min-1 but not at higher dobutamine infusion rates. Conventional endocardial shortening and the slope of the ESPDR, fitted to a linear model, exhibited responses similar to Sm. The velocity of circumferential endocardial fiber shortening (Vcf,c), Vcf,c-afterload relation, and maximum first derivative of left ventricular pressure exhibited responses similar to SRm. Thus both the extent and velocity of contraction increased at low doses of dobutamine, whereas only the velocity increased at high doses. Potential mechanisms for the saturated response of the extent of contraction include 1) shorter systolic time for contraction due to earlier onset of relaxation and 2) the utilization of myocardial contractile energy for left ventricular wall deformation at small cavity volumes at high doses of dobutamine.


Sign in / Sign up

Export Citation Format

Share Document