Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats

1994 ◽  
Vol 266 (4) ◽  
pp. H1457-H1464 ◽  
Author(s):  
M. Fabricius ◽  
M. Lauritzen

We examined the effect of nitric oxide synthase (NOS) inhibition and tetrodotoxin (TTX) on the increase of cerebral blood flow (CBF) in parietal (CoBF) and cerebellar cortex (CeBF) in response to hypercapnia. Rats were anesthetized with halothane and artificially ventilated. Hypercapnia was induced by adding 5% CO2 to the inhalation mixture. CoBF and CeBF were measured by laser-Doppler flowmetry. NOS inhibition was achieved by intravenous (30 mg/kg) and/or topical application (1 mM) of NG-nitro-L-arginine (L-NNA). Activity in perivascular nerves around pial and cortical vessels was inhibited by topical application of TTX (20 microM). Under control conditions, hypercapnia (66 +/- 1 mmHg) increased CoBF by 70 +/- 4% and CeBF by 96 +/- 5%. Systemic L-NNA decreased the baseline level of CoBF and CeBF by 11 +/- 3%, but topical L-NNA did not affect baseline flow. Intravenous L-NNA attenuated the hypercapnic increase of CoBF by 77 +/- 5% and CeBF by 63 +/- 4% within 10-20 min. Topical L-NNA attenuated the hypercapnic increase of CoBF by 52 +/- 6% and CeBF by 29 +/- 5% after 45-min exposure. Both CoBF and CeBF decreased rapidly when L-NNA was infused during sustained hypercapnia, but not when L-NNA was applied topically. Effect of intravenous L-NNA was partially prevented by pretreatment with intravenous L-arginine. Intravenous or topical L-NNA enhanced the rise of CBF elicited by cortical spreading depression, adenosine (1 mM), or sodium nitroprusside (300 microM), except in the cerebellum where topical L-NNA attenuated the rise of CBF elicited by adenosine by 53%.(ABSTRACT TRUNCATED AT 250 WORDS)

1995 ◽  
Vol 15 (5) ◽  
pp. 774-778 ◽  
Author(s):  
Qiong Wang ◽  
Dale A. Pelligrino ◽  
Verna L. Baughman ◽  
Heidi M. Koenig ◽  
Ronald F. Albrecht

The nitric oxide synthase (NOS) inhibitors, nitro-L-arginine, its methyl ester, and N-monomethyl-L-arginine, have been shown to attenuate resting CBF and hypercapnia-induced cerebrovasodilation. Those agents nonspecifically inhibit the endothelial and neuronal NOS (eNOS and nNOS). In the present study, we used a novel nNOS inhibitor, 7-nitroindazole (7-NI) to examine the role of nNOS in CBF during normocapnia and hypercapnia in fentanyl/N2O-anesthetized rats. CBF was monitored using laser-Doppler flowmetry. Administration of 7-NI (80 mg kg−1 i.p.) reduced cortical brain NOS activity by 57%, the resting CBF by 19–27%, and the CBF response to hypercapnia by 60%. The 60% reduction was similar in magnitude to the CBF reductions observed in previous studies in which nonspecific NOS inhibitors were used. In the present study, 7-NI did not increase the MABP. Furthermore, the CBF response to oxotremorine, a blood–brain barrier permeant muscarinic agonist that induces cerebrovasodilation via endothelium-derived NO, was unaffected by 7-NI. These results confirmed that 7-NI does not influence eNOS; they also indicated that the effects of 7-NI on the resting CBF and on the CBF response to hypercapnia in this study were solely related to its inhibitory action on nNOS. The results further suggest that the NO synthesized by the action of nNOS participates in regulation of basal CBF and is the major, if not the only, category of NO contributing to the hypercapnic CBF response.


2000 ◽  
Vol 20 (4) ◽  
pp. 709-717 ◽  
Author(s):  
Masaru Yamada ◽  
Zhihong Huang ◽  
Turgay Dalkara ◽  
Matthias Endres ◽  
Ulrich Laufs ◽  
...  

Nitric oxide, a product of nitric oxide synthase activity, relaxes vascular smooth muscle and elevates brain blood flow. We evaluated the importance of eNOS to cerebral blood flow augmentation after L-arginine infusion and increases in flow after eNOS upregulation in SV-129 mice. Blood flow was measured by laser-Doppler flowmetry before and after L-arginine infusion (450 mg/kg during a 15-minute period) or measured by 14C-iodoamphetamine indicator fractionation or 14C-iodoantipyrine tissue equilibration techniques. rCBF increased by 26% (laser Doppler flowmetry) after L-arginine infusion but did not change in mutant mice deficient in eNOS expression. After eNOS upregulation by chronic simvastatin treatment (2 mg/kg subcutaneously, daily for 14 days), L-arginine amplified and sustained the hyperemia (38%) and increased absolute brain blood flow from 86 ± 7 to 119 ± 10 mL/100 g per minute. Furthermore, pretreatment with simvastatin enhanced blood flow within ischemic brain tissue after middle cerebral artery occlusion. Together, these findings suggest that eNOS activity is critical for blood flow augmentation during acute L-arginine infusion, and chronic eNOS upregulation combined with L-arginine administration provides a novel strategy to elevate cerebral blood flow in the normal and ischemic brain.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S91-S91
Author(s):  
Candice E Van Skike ◽  
Stacy A Hussong ◽  
Andy Banh ◽  
Veronica Galvan

Abstract We recently identified pathogenic soluble aggregated tau (tau oligomers) in the cerebral microvasculature of human patients with tauopathies, including Alzheimer’s disease (AD). The functional consequences of cerebrovascular tau accumulation are not yet understood. The aim of the present study was to determine whether pathogenic tau accumulation leads to cerebrovascular dysfunction. To this end, we measured neurovascular coupling (NVC), a highly regulated process that synchronizes cerebral blood flow to neuronal activation, using the PS19(P301S) mouse model of tauopathy. The change in cerebral blood flow evoked by whisker stimulation was measured using Laser Doppler flowmetry in PS19 and wildtype control mice and the functional contribution of neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively) was calculated. Vascular reactivity was assessed using topical acetylcholine to evoke endothelium-dependent vasodilation. To assess the direct impact of pathogenic tau on cell-specific NOS function, we treated N2a neuroblastoma cells or mouse brain vascular endothelial cells with soluble tau aggregates and measured activity of nNOS and eNOS. Our data indicate isolated overexpression of mutant tau impairs NVC responses, and this deficit is mediated by a reduction in nNOS activity in vivo. Further, our studies suggest tauopathy also impairs endothelium-dependent vasoreactivity in the cortex. Additionally, soluble tau aggregates inhibit the phosphorylation of NOS in primary cultured cells. Therefore, inhibition of NOS phosphorylation by pathogenic soluble tau aggregates may underlie cerebrovascular dysfunction in tauopathies. Thus, therapeutic modulation of pathogenic tau may mitigate brain microvascular deficits, which occur prior to clinical onset in Alzheimer’s disease and potentially other tauopathies.


2005 ◽  
Vol 289 (3) ◽  
pp. R776-R783 ◽  
Author(s):  
Emilia M. Sanhueza ◽  
Raquel A. Riquelme ◽  
Emilio A. Herrera ◽  
Dino A. Giussani ◽  
Carlos E. Blanco ◽  
...  

The fetal llama responds to hypoxemia, with a marked peripheral vasoconstriction but, unlike the sheep, with little or no increase in cerebral blood flow. We tested the hypothesis that the role of nitric oxide (NO) may be increased during hypoxemia in this species, to counterbalance a strong vasoconstrictor effect. Ten fetal llamas were operated under general anesthesia. Mean arterial pressure (MAP), heart rate, cardiac output, total vascular resistance, blood flows, and vascular resistances in cerebral, carotid and femoral vascular beds were determined. Two groups were studied, one with nitric oxide synthase (NOS) blocker NG-nitro-l-arginine methyl ester (l-NAME), and the other with 0.9% NaCl (control group), during normoxemia, hypoxemia, and recovery. During normoxemia, l-NAME produced an increase in fetal MAP and a rapid bradycardia. Cerebral, carotid, and femoral vascular resistance increased and blood flow decreased to carotid and femoral beds, while cerebral blood flow did not change significantly. However, during hypoxemia cerebral and carotid vascular resistance fell by 44% from its value in normoxemia after l-NAME, although femoral vascular resistance progressively increased and remained high during recovery. We conclude that in the llama fetus: 1) NO has an important role in maintaining a vasodilator tone during both normoxemia and hypoxemia in cerebral and femoral vascular beds and 2) during hypoxemia, NOS blockade unmasked the action of other vasodilator agents that contribute, with nitric oxide, to preserving blood flow and oxygen delivery to the tissues.


1996 ◽  
Vol 271 (5) ◽  
pp. H2035-H2044 ◽  
Author(s):  
M. Fabricius ◽  
I. Rubin ◽  
M. Bundgaard ◽  
M. Lauritzen

We examined whether attenuation of the hypercapnic increase of cerebral blood flow (CBF) associated with nitric oxide synthase (NOS) inhibition is related to local neuronal or aortic endothelial NOS activity or local endothelial/neuronal NOS-dependent vasodilation. Halothane-anesthetized rats were ventilated, and CBF was measured by laser-Doppler flowmetry over the parietal and cerebellar cortex. Intravenous N omega-nitro-L-arginine (L-NNA; 30 mg/kg) inhibited brain and aortic NOS activity by 67-70%. Topical L-NNA (1 mM) inhibited brain NOS activity by 91-94%, whereas aortic NOS activity remained constant. In contrast, intravenous L-NNA attenuated the hypercapnic CBF rise much more efficiently than topical L-NNA. 7-Nitroindazole, another NOS inhibitor, attenuated endothelial and neuronal NOS activity equally well and inhibited the hypercapnic CBF increase as effectively as L-NNA. Topical L-NNA and 7-nitroindazole abolished local endothelial NOS-dependent vasodilation after 15 min, whereas hypercapnic CBF was only slightly reduced. L-NNA injected into the tissue abolished neuronal NOS-dependent vasodilation, whereas hypercapnic CBF was unchanged. The findings suggest that local NOS activity, whether neuronal or endothelial, is unimportant for the hypercapnic rise of CBF.


1997 ◽  
Vol 272 (1) ◽  
pp. H559-H566 ◽  
Author(s):  
H. Okamoto ◽  
A. G. Hudetz ◽  
R. J. Roman ◽  
Z. J. Bosnjak ◽  
J. P. Kampine

The aim of the present study was to determine whether neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) plays a permissive role in the regulation of cerebral blood flow (CBF) response to hypercapnia. To this end, we examined whether the administration of NO donors could reestablish the regional CBF (rCBF) response to hypercapnia after nNOS inhibition with 7-nitroindazole (7-NI). Rats were anesthetized with 1% halothane, and rCBF in the cortex was measured by laser-Doppler flowmetry. The administration of 7-NI (40 mg/kg ip) decreased resting rCBF by 17 +/- 5% (n = 6, P < 0.05) and attenuated the rCBF response to hypercapnia by 30 +/- 8% in comparison with the response seen in rats treated with the vehicle (peanut oil) alone. Intracerebroventricular administration of NO donors, sodium nitroprusside (SNP; n = 7) and (Z)-1-[N-methyl-N-[6(N-methylammoniohexyl)aminol]]diazen+ ++-1-ium-1,2-diolate (MAHMA NONOate; n = 6) in a dose of 0.1-1 nmol/min after 7-NI restored both resting rCBF to baseline and the vasodilatory response to hypercapnia. In contrast, intravenous infusion of SNP (0.05-0.5 nmol/min, n = 6) or intracerebroventricular administration of an NO-independent vasodilator, the stable prostaglandin I2 analog iloprost (0.01-0.1 nmol/min, n = 6), after 7-NI failed to restore the vasodilatory response to hypercapnia, despite the fact that it restored the resting rCBF to baseline. nNOS activity, assessed by the conversion of labeled arginine to citrulline, was inhibited by 70 +/- 7% after the administration of 7-NI. These findings confirm that the selective inhibition of nNOS decreases resting rCBF and attenuates the rCBF response of hypercapnia. They further indicate that the repletion of intraparenchymal NO allows the hypercapnic cerebrocortical vasodilation to occur. Therefore, it is suggested that the nNOS-derived NO plays a permissive role in the CBF response to hypercapnia.


1996 ◽  
Vol 271 (3) ◽  
pp. H990-H995 ◽  
Author(s):  
D. A. Pelligrino ◽  
R. L. Gay ◽  
V. L. Baughman ◽  
Q. Wang

The effects of nitric oxide synthase (NOS) inhibition on the cerebral blood flow (CBF) and electroencephalographic (EEG) changes accompanying intravenous administration of the excitatory amino acid receptor agonist, N-methyl-D-aspartate (NMDA), were examined in anesthetized rats. Two NOS inhibition strategies were used: chronic N omega-nitro-L-arginine (L-NNA) administration (100 mg.kg-1.day-1 ip, over 4 days) and acute L-NNA administration (100 mg/kg iv infused over 1 h). In both cases, cortical CBF was continuously monitored on study days using laser-Doppler flowmetry, and EEG was recorded, along with measurements of total EEG power. In all rats, the NMDA was given as a 1-min intravenous infusion (20 mg/kg). During all experiments, arterial pressure was controlled within the autoregulatory range. We compared the results from rats treated chronically with L-NNA or its enantiomer. N omega-nitro-D-arginine. In the acute treatment group, two NMDA infusions were given, separated by 90 min, interposed by a 1-h L-NNA infusion. Control rats received saline in place of the L-NNA. Both L-NNA treatment protocols significantly increased the duration of NMDA-induced alterations in EEG activity, relative to controls. NMDA induced a transient 40-100% increase in cortical CBF that was blocked by acute but not chronic L-NNA administration. These results indicate that 1) under normal circumstances nitric oxide is the principal mediator of NMDA-induced cerebrovasodilation; 2) with chronic NOS inhibition, NMDA-induced vasodilation returns to normal, implying replacement of nitric oxide by other factors; and 3) nitric oxide acts as a negative feedback modulator of NMDA-induced changes in brain activity.


2021 ◽  
Author(s):  
Kevin O’Gallagher ◽  
Francesca Puledda ◽  
Owen O’Daly ◽  
Matthew Ryan ◽  
Luke Dancy ◽  
...  

Abstract Aims Neuronal nitric oxide synthase (nNOS) is highly expressed within the cardiovascular and nervous systems. Studies in genetically modified mice suggest roles in brain blood flow regulation while dysfunctional nNOS signaling is implicated in cerebrovascular ischemia and migraine. Previous human studies have investigated the effects of non-selective NOS inhibition but there has been no direct investigation of the role of nNOS in human cerebrovascular regulation. We hypothesised that inhibition of the tonic effects of nNOS would result in global or localized changes in cerebral blood flow, as well as changes in functional brain connectivity. Methods and Results We investigated the acute effects of a selective nNOS inhibitor, S-methyl-L-thiocitrulline (SMTC), on cerebral blood flow and brain functional connectivity in healthy human volunteers (n=19). We performed a randomised, placebo-controlled, crossover study with either intravenous SMTC or placebo, using magnetic resonance imaging protocols with arterial spin labelling and functional resting state neuroimaging. Conclusions These data suggest a fundamental physiological role of nNOS in regulating regional cerebral blood flow and functional connectivity in the human hippocampus. Our findings have relevance to the role of nNOS in the regulation of cerebral perfusion in health and disease. Translational Perspective Animal models have implicated dysfunctional nNOS-mediated signaling in neurovascular and neurodegenerative conditions. This first study of the effects of a selective nNOS inhibitor, S-methyl-thiocitrulliune (SMTC), on the physiological regulation of human cerebral blood flow and brain functional connectivity opens the way to investigation of the effects of nNOS in cerebrovascular disease states. We also demonstrate that an acute infusion of SMTC is safe yet biologically active within the healthy human brain. The therapeutic potential of modulating the nNOS pathway in the brain could now be investigated; e.g. whether inhibition of nNOS activity is valuable in settings of post-ischemia excitotoxicity.


1992 ◽  
Vol 12 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Marleen J. Verhaegen ◽  
Michael M. Todd ◽  
David S. Warner ◽  
Bruce James ◽  
Julie B. Weeks

Cerebral blood flow was measured by the H2 clearance method 30 and 60 min after the implantation of 300, 250, 125, or 50 μm diameter platinum–iridium electrodes 2 mm deep into the right parietal cortex of normothermic, normocarbic halothane-anesthetized rats. Another group of animals had 50 μm electrodes inserted 1 mm. In all animals, the presence or absence of a wave of spreading depression (SD) was noted at the time of implantation, with recordings made with glass micropipettes. H2 flow values were compared with those measured in gray matter from the same anatomical region (but from different rats), using [3H]nicotine. The incidence of SD ranged from 60% following insertion of 300 μm electrodes to 0% with 50 μm electrodes. H2 clearance flows also varied with electrode size, from 77 ± 21 ml 100 g−1 min−1 (mean ± standard deviation) with 300 μm electrodes to 110 ± 31 and 111 ± 16 ml 100 g−1 min−1 with 125 and 50 μm electrodes, respectively (insertion depth of 2 mm). A CBF value of 155 ± 60 ml 100 g−1 min−1 was obtained with 50 μm electrodes inserted only 1 mm. Cortical gray matter blood flow measured with [3H]nicotine was 154 ± 35 ml 100 g−1 min−1. When the role of SD in subsequent flow measurements was examined, there was a gradual increase in CBF between 30 and 60 min after electrode insertion in those animals with SD, while no such change was seen in rats without SD. These results indicate that the choice of electrode size and implantation depth influences the measurement of CBF by H2 clearance. CBF values equivalent to those obtained with isotopic techniques can be acutely obtained with small (50 μm diameter) electrodes inserted 1 mm into the cortex. While the occurrence of SD does influence CBF in the period immediately after implantation, a relationship between electrode size and measured flow is present that is independent of SD.


Sign in / Sign up

Export Citation Format

Share Document