scholarly journals Vasodilator tone in the llama fetus: the role of nitric oxide during normoxemia and hypoxemia

2005 ◽  
Vol 289 (3) ◽  
pp. R776-R783 ◽  
Author(s):  
Emilia M. Sanhueza ◽  
Raquel A. Riquelme ◽  
Emilio A. Herrera ◽  
Dino A. Giussani ◽  
Carlos E. Blanco ◽  
...  

The fetal llama responds to hypoxemia, with a marked peripheral vasoconstriction but, unlike the sheep, with little or no increase in cerebral blood flow. We tested the hypothesis that the role of nitric oxide (NO) may be increased during hypoxemia in this species, to counterbalance a strong vasoconstrictor effect. Ten fetal llamas were operated under general anesthesia. Mean arterial pressure (MAP), heart rate, cardiac output, total vascular resistance, blood flows, and vascular resistances in cerebral, carotid and femoral vascular beds were determined. Two groups were studied, one with nitric oxide synthase (NOS) blocker NG-nitro-l-arginine methyl ester (l-NAME), and the other with 0.9% NaCl (control group), during normoxemia, hypoxemia, and recovery. During normoxemia, l-NAME produced an increase in fetal MAP and a rapid bradycardia. Cerebral, carotid, and femoral vascular resistance increased and blood flow decreased to carotid and femoral beds, while cerebral blood flow did not change significantly. However, during hypoxemia cerebral and carotid vascular resistance fell by 44% from its value in normoxemia after l-NAME, although femoral vascular resistance progressively increased and remained high during recovery. We conclude that in the llama fetus: 1) NO has an important role in maintaining a vasodilator tone during both normoxemia and hypoxemia in cerebral and femoral vascular beds and 2) during hypoxemia, NOS blockade unmasked the action of other vasodilator agents that contribute, with nitric oxide, to preserving blood flow and oxygen delivery to the tissues.

2007 ◽  
Vol 85 (10) ◽  
pp. 1038-1046 ◽  
Author(s):  
Banafsheh Afsharimani ◽  
Leila Moezi ◽  
Hamed Sadeghipour ◽  
Bahareh Rahimzadeh-Rofouyi ◽  
Maliheh Nobakht ◽  
...  

The mechanism of action of lithium, an effective treatment for bipolar disease, is still unknown. In this study, the mesenteric vascular beds of control rats and rats that were chronically treated with lithium were prepared by the McGregor method, and the mesenteric vascular bed vasorelaxation responses were examined. NADPH-diaphorase histochemistry was used to determine the activity of NOS (nitric oxide synthase) in mesenteric vascular beds. We demonstrated that ACh-induced vasorelaxation increased in the mesenteric vascular bed of rats treated with lithium. Acute Nο-nitro-l-arginine methyl ester (l-NAME) administration in the medium blocked ACh-induced vasorelaxation in the control group more effectively than in lithium-treated rats, while the vasorelaxant response to sodium nitroprusside, a NO donor, was not different between lithium-treated and control groups. Acute aminoguanidine administration blocked ACh-induced vasorelaxation of lithium-treated rats, but had no effect in the control rats. Furthermore, NOS activity, determined by NADPH-diaphorase staining, was significantly greater in the mesenteric vascular beds from chronic lithium-treated rats than in those from control rats. These data suggest that the enhanced ACh-induced endothelium-derived vasorelaxation in rat mesenteric bed from chronic lithium-treated rats might be associated with increased NOS activity, likely via iNOS. Simultaneous acute l-NAME and indomethacin administration suggests the possible upregulation of EDHF (endothelium-derived hyperpolarizing factor) in lithium-treated rats.


1994 ◽  
Vol 266 (4) ◽  
pp. H1457-H1464 ◽  
Author(s):  
M. Fabricius ◽  
M. Lauritzen

We examined the effect of nitric oxide synthase (NOS) inhibition and tetrodotoxin (TTX) on the increase of cerebral blood flow (CBF) in parietal (CoBF) and cerebellar cortex (CeBF) in response to hypercapnia. Rats were anesthetized with halothane and artificially ventilated. Hypercapnia was induced by adding 5% CO2 to the inhalation mixture. CoBF and CeBF were measured by laser-Doppler flowmetry. NOS inhibition was achieved by intravenous (30 mg/kg) and/or topical application (1 mM) of NG-nitro-L-arginine (L-NNA). Activity in perivascular nerves around pial and cortical vessels was inhibited by topical application of TTX (20 microM). Under control conditions, hypercapnia (66 +/- 1 mmHg) increased CoBF by 70 +/- 4% and CeBF by 96 +/- 5%. Systemic L-NNA decreased the baseline level of CoBF and CeBF by 11 +/- 3%, but topical L-NNA did not affect baseline flow. Intravenous L-NNA attenuated the hypercapnic increase of CoBF by 77 +/- 5% and CeBF by 63 +/- 4% within 10-20 min. Topical L-NNA attenuated the hypercapnic increase of CoBF by 52 +/- 6% and CeBF by 29 +/- 5% after 45-min exposure. Both CoBF and CeBF decreased rapidly when L-NNA was infused during sustained hypercapnia, but not when L-NNA was applied topically. Effect of intravenous L-NNA was partially prevented by pretreatment with intravenous L-arginine. Intravenous or topical L-NNA enhanced the rise of CBF elicited by cortical spreading depression, adenosine (1 mM), or sodium nitroprusside (300 microM), except in the cerebellum where topical L-NNA attenuated the rise of CBF elicited by adenosine by 53%.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Author(s):  
Kevin O’Gallagher ◽  
Francesca Puledda ◽  
Owen O’Daly ◽  
Matthew Ryan ◽  
Luke Dancy ◽  
...  

Abstract Aims Neuronal nitric oxide synthase (nNOS) is highly expressed within the cardiovascular and nervous systems. Studies in genetically modified mice suggest roles in brain blood flow regulation while dysfunctional nNOS signaling is implicated in cerebrovascular ischemia and migraine. Previous human studies have investigated the effects of non-selective NOS inhibition but there has been no direct investigation of the role of nNOS in human cerebrovascular regulation. We hypothesised that inhibition of the tonic effects of nNOS would result in global or localized changes in cerebral blood flow, as well as changes in functional brain connectivity. Methods and Results We investigated the acute effects of a selective nNOS inhibitor, S-methyl-L-thiocitrulline (SMTC), on cerebral blood flow and brain functional connectivity in healthy human volunteers (n=19). We performed a randomised, placebo-controlled, crossover study with either intravenous SMTC or placebo, using magnetic resonance imaging protocols with arterial spin labelling and functional resting state neuroimaging. Conclusions These data suggest a fundamental physiological role of nNOS in regulating regional cerebral blood flow and functional connectivity in the human hippocampus. Our findings have relevance to the role of nNOS in the regulation of cerebral perfusion in health and disease. Translational Perspective Animal models have implicated dysfunctional nNOS-mediated signaling in neurovascular and neurodegenerative conditions. This first study of the effects of a selective nNOS inhibitor, S-methyl-thiocitrulliune (SMTC), on the physiological regulation of human cerebral blood flow and brain functional connectivity opens the way to investigation of the effects of nNOS in cerebrovascular disease states. We also demonstrate that an acute infusion of SMTC is safe yet biologically active within the healthy human brain. The therapeutic potential of modulating the nNOS pathway in the brain could now be investigated; e.g. whether inhibition of nNOS activity is valuable in settings of post-ischemia excitotoxicity.


1998 ◽  
Vol 74 (2-3) ◽  
pp. 185-192 ◽  
Author(s):  
Enikö A. Kramár ◽  
Radhika Krishnan ◽  
Joseph W. Harding ◽  
John W. Wright

2003 ◽  
Vol 111 (5) ◽  
pp. 759-759
Author(s):  
Florian P. Limbourg ◽  
Zhihong Huang ◽  
Jean-Christophe Plumier ◽  
Tommaso Simoncini ◽  
Masayuki Fujioka ◽  
...  

1995 ◽  
Vol 15 (5) ◽  
pp. 774-778 ◽  
Author(s):  
Qiong Wang ◽  
Dale A. Pelligrino ◽  
Verna L. Baughman ◽  
Heidi M. Koenig ◽  
Ronald F. Albrecht

The nitric oxide synthase (NOS) inhibitors, nitro-L-arginine, its methyl ester, and N-monomethyl-L-arginine, have been shown to attenuate resting CBF and hypercapnia-induced cerebrovasodilation. Those agents nonspecifically inhibit the endothelial and neuronal NOS (eNOS and nNOS). In the present study, we used a novel nNOS inhibitor, 7-nitroindazole (7-NI) to examine the role of nNOS in CBF during normocapnia and hypercapnia in fentanyl/N2O-anesthetized rats. CBF was monitored using laser-Doppler flowmetry. Administration of 7-NI (80 mg kg−1 i.p.) reduced cortical brain NOS activity by 57%, the resting CBF by 19–27%, and the CBF response to hypercapnia by 60%. The 60% reduction was similar in magnitude to the CBF reductions observed in previous studies in which nonspecific NOS inhibitors were used. In the present study, 7-NI did not increase the MABP. Furthermore, the CBF response to oxotremorine, a blood–brain barrier permeant muscarinic agonist that induces cerebrovasodilation via endothelium-derived NO, was unaffected by 7-NI. These results confirmed that 7-NI does not influence eNOS; they also indicated that the effects of 7-NI on the resting CBF and on the CBF response to hypercapnia in this study were solely related to its inhibitory action on nNOS. The results further suggest that the NO synthesized by the action of nNOS participates in regulation of basal CBF and is the major, if not the only, category of NO contributing to the hypercapnic CBF response.


Sign in / Sign up

Export Citation Format

Share Document