Effect of inhibition of NO synthase on vascular reactivity in a rat model of hyperdynamic sepsis

1994 ◽  
Vol 267 (4) ◽  
pp. H1377-H1382 ◽  
Author(s):  
G. A. Fox ◽  
N. A. Paterson ◽  
D. G. McCormack

To evaluate the role of nitric oxide (NO) in the attenuated vascular reactivity observed in sepsis, we utilized the specific NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME). Male Sprague-Dawley rats (n = 16) were randomized to either sepsis induced by cecal ligation and perforation (CLP; n = 8) or sham procedure (Sham; n = 8). Vascular reactivity was assessed by measuring the pulmonary pressor response to hypoxia (HPV) (fractional inspired O2 concentration = 0.08) and the pulmonary and systemic pressor response to an intravenous infusion of phenylephrine (1.5-6.0 micrograms.kg-1.min-1). Twenty-four hours after surgery, CLP animals had significantly attenuated HPV compared with Sham animals. In response to hypoxia the change in total pulmonary vascular resistance during hypoxia was 0.008 +/- 0.004 and 0.021 +/- 0.006 mmHg.min-ml-1 in CLP and Sham animals, respectively (P < 0.05). The pulmonary and systemic blood pressure response to phenylephrine was also attenuated in CLP compared with Sham animals. After L-NAME infusion (15 mg/kg), there was a significant augmentation of the HPV response in Sham animals. In contrast, the HPV response in CLP animals was unchanged after L-NAME. The attenuated pressor response to phenylephrine in neither the pulmonary nor the systemic circulation was changed after the administration of L-NAME. These data suggest that in rats, excess NO is not an important mediator of the attenuated vascular reactivity observed in sepsis.

1961 ◽  
Vol 201 (2) ◽  
pp. 369-374 ◽  
Author(s):  
K. Braun ◽  
S. Stern

Large doses of serotonin (200 µg/ kg) in the anesthetized open-chest dog, administered into the femoral vein, right heart, pulmonary artery, left heart, ascending aorta or common carotid arteries, caused a marked pressor response in the systemic circulation. The latent period became shorter with the shift of the site of the injection toward the ascending aorta. After injection into the descending aorta a "double peak" pressor response was obtained. These observations, together with the demonstration of a much less pronounced pressor effect after elimination of the aortic and carotid chemoreceptors, indicate participation of chemoreceptor stimulation in the systemic pressor response. In the pulmonary artery the pressure rose markedly and consistently. A rise in the pulmonary venous pressure without any significant change in the left atrial pressure was observed, indicating pulmonary venous constriction. Chemoreceptor stimulation was shown to play a part also in the rise of both the pulmonary arterial and pulmonary venous pressures.


2012 ◽  
Vol 302 (2) ◽  
pp. R259-R263 ◽  
Author(s):  
Sydney R. Murphy ◽  
Babbette LaMarca ◽  
Kathy Cockrell ◽  
Marietta Arany ◽  
Joey P. Granger

While soluble fms-like tyrosine kinase-1 (sFlt-1) and endothelin-1 (ET-1) have been implicated in the pathogenesis of preeclampsia (PE), the mechanisms whereby increased sFlt-1 leads to enhanced ET-1 production and hypertension remain unclear. It is well documented that nitric oxide (NO) production is reduced in PE; however, whether a reduction in NO synthesis plays a role in increasing ET-1 and blood pressure in response to chronic increases in plasma sFlt-1 remains unclear. The purpose of this study was to determine the role of reduced NO synthesis in the increase in blood pressure and ET-1 in response to sFlt-1 in pregnant rats. sFlt-1 was infused into normal pregnant (NP) Sprague-Dawley rats (3.7 μg·kg−1·day−1 for 6 days beginning on day 13 of gestation) treated with the NO synthase inhibitor NG-nitro-l-arginine methyl ester (100 mg/l for 4 days) or supplemented with 2% l-Arg (in drinking water for 6 days beginning on day 15 of gestation). Infusion of sFlt-1 into NP rats significantly elevated mean arterial pressure compared with control NP rats: 116 ± 2 vs. 103 ± 1 mmHg ( P < 0.05). NO synthase inhibition had no effect on the blood pressure response in sFlt-1 hypertensive pregnant rats (121 ± 3 vs. 116 ± 2 mmHg), while it significantly increased mean arterial pressure in NP rats (128 ± 4 mmHg, P < 0.05). In addition, NO production was reduced ∼70% in isolated glomeruli from sFlt-1 hypertensive pregnant rats compared with NP rats ( P < 0.05). Furthermore, prepro-ET-1 in the renal cortex was increased ∼3.5-fold in sFlt-1 hypertensive pregnant rats compared with NP rats. Supplementation with l-Arg decreased the sFlt-1 hypertension (109 ± 3 mmHg, P < 0.05) but had no effect on the blood pressure response in NP rats (109 ± 3 mmHg) and abolished the enhanced sFlt-1-induced renal cortical prepro-ET expression. In conclusion, a reduction in NO synthesis may play an important role in the enhanced ET-1 production in response to sFlt-1 hypertension in pregnant rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christian Arias-Reyes ◽  
Sofien Laouafa ◽  
Natalia Zubieta-DeUrioste ◽  
Vincent Joseph ◽  
Aida Bairam ◽  
...  

Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated “en bloc” carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO’s action.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Sebastiaan Wesseling ◽  
Joost O Fledderus ◽  
Johanna A Dijk ◽  
Chantal Tilburgs ◽  
Marianne C Verhaar ◽  
...  

Chronic nitric oxide (NO) depletion induces hypertension and renal damage. Chronic kidney disease is associated with decreased NO availability and less renal H 2 S production. We hypothesized that combined depletion of NO and H 2 S aggravates hypertension and renal injury. Male 8-wk old Sprague Dawley rats were treated with vehicle, NO synthase inhibitor L-NG-nitroarginine (LNNA; 125 mg/L in drinking water), cystathionine-γ-lyase (CSE) inhibitor propargylglycine (PAG; 37.5 mg/kg BW ip daily) or LNNA + PAG for 1 and 4 weeks (6 rats/group). LNNA after 4w increased systolic blood pressure (SBP; 223±10 vs . 137±3 mmHg in controls; P<0.01), proteinuria (144±35 vs. 17±2 mg/d; P<0.01), uremia (16.6±4.2 vs . 7.0±0.4 mmol/L; P<0.05) and tubulo-interstitial injury (P<0.01). LNNA reduced urinary NO metabolite (NOx) excretion by ∼85% after 1w and 4w. PAG alone had no effect on SBP, renal function or injury, but did reduce urinary NOx excretion. Co-treatment with PAG ameliorated LNNA-induced hypertension (182±10 mmHg; P<0.01) and prevented proteinuria (27±3 mg/d), uremia (8.3±0.4 mmol/L) and tubulo-interstitial injury, but did not further reduce urinary NOx excretion. Renal H 2 S production was almost absent in all PAG groups after 1w and 4w (P<0.01) and was reduced in LNNA-treated rats after 4w (4.6±1.4 vs . 9.2±0.5 μmol/hr/mg; P<0.01). Renal HO-1 gene expression was strongly induced in all PAG-treated groups after 1w and 4w (4 to 19-fold; P<0.01) whereas LNNA only increased HO-1 gene expression at 4w (P<0.01). Immunohistochemistry showed that renal HO-1 protein was primarily interstitial in all PAG-treated groups at 1w and 4w. In contrast, LNNA only showed HO-1 in tubular epithelium in conjunction with protein casts. Depleting NO caused hypertension and renal damage followed by reduced renal H 2 S production and increased renal HO-1 expression. Surprisingly, concomitant inhibition of CSE ameliorated hypertension and prevented renal injury. PAG almost completely blocked renal H 2 S production and caused strong induction of renal HO-1, independently of injury, suggesting that H 2 S suppresses renal HO-1 expression. In conclusion, concomitant upregulation of HO-1 expression by inhibition of H 2 S production, prevents LNNA-induced hypertension and renal injury.


2007 ◽  
Vol 292 (1) ◽  
pp. H245-H250 ◽  
Author(s):  
Zheng F. Ba ◽  
Ailing Lu ◽  
Tomoharu Shimizu ◽  
László Szalay ◽  
Martin G. Schwacha ◽  
...  

Although endothelin-1 (ET-1) induces vasoconstriction, it remains unknown whether 17β-estradiol (E2) treatment following trauma-hemorrhage alters these ET-1-induced vasoconstrictive effects. In addition, the role of the specific estrogen receptor (ER) subtypes (ER-α and ER-β) and the endothelium-localized downstream mechanisms of actions of E2 remain unclear. We hypothesized that E2 attenuates increased ET-1-induced vasoconstriction following trauma-hemorrhage via an ER-β-mediated pathway. To study this, aortic rings were isolated from male Sprague-Dawley rats following trauma-hemorrhage with or without E2 treatment, and alterations in tension were determined in vitro. Dose-response curves to ET-1 were determined, and the vasoactive properties of E2, propylpyrazole triol (PPT, ER-α agonist), and diarylpropionitrile (DPN, ER-β agonist) were determined. The results showed that trauma-hemorrhage significantly increased ET-1-induced vasoconstriction; however, administration of E2 normalized ET-1-induced vasoconstriction in trauma-hemorrhage vessels to the sham-operated control level. The ER-β agonist DPN counteracted ET-1-induced vasoconstriction, whereas the ER-α agonist PPT was ineffective. Moreover, the vasorelaxing effects of E2 were not observed in endothelium-denuded aortic rings or by pretreatment of the rings with a nitric oxide (NO) synthase inhibitor. Cyclooxygenase inhibition with indomethacin had no effect on the action of E2. Thus, E2 administration attenuates ET-1-induced vasoconstriction following trauma-hemorrhage via an ER-β-mediated pathway that is dependent on endothelium-derived NO synthesis.


2001 ◽  
Vol 280 (3) ◽  
pp. H956-H961 ◽  
Author(s):  
Yunlong Zhang ◽  
Ken G. Stewart ◽  
Sandra T. Davidge

The role of estrogen in the maternal systemic cardiovascular adaptations during pregnancy is still controversial. Female Sprague-Dawley rats were implanted at day 14 of pregnancy with either a 50-mg tamoxifen pellet (estrogen receptor blocker, n = 10) or placebo pellet ( n = 10). Virgin female rats were a nonpregnant control ( n = 7). At days 20–22 of pregnancy, resistance-sized mesenteric arteries were mounted onto a dual-chamber arteriograph system. Pregnancy significantly blunted the pressor response to phenylephrine [measurement of the effective concentration that yielded 50% maximum response (EC50) values were 1.5 ± 0.22 vs. 0.69 ± 0.16 μM ( P < 0.05)] and enhanced vasodilation to ACh [EC50 = 1.13 ± 2.53 vs. 3.13 ± 6.04 nM ( P < 0.05)] compared with nonpregnant rats. However, tamoxifen treatment during pregnancy reversed these effects. Inhibition of nitric oxide (NO) synthase with N G-monomethyl-l-arginine (250 μM) shifted only the responses of the placebo-treated pregnant group to both phenylephrine and ACh. Arterial distensibility in the placebo-treated pregnant group was also significantly increased ( P < 0.05) compared with nonpregnant and tamoxifen-treated pregnant animals. In summary, endogenous estrogen during pregnancy increases NO-dependent modulation of vessel tone and arterial distensibility.


2008 ◽  
Vol 294 (6) ◽  
pp. H2627-H2636 ◽  
Author(s):  
Wen-Hong Kan ◽  
Jun-Te Hsu ◽  
Zheng-Feng Ba ◽  
Martin G. Schwacha ◽  
Jianguo Chen ◽  
...  

Studies have shown that p38 MAPK and nitric oxide (NO), generated by endothelial NO synthase (eNOS), play key roles under physiological and pathophysiological conditions. Although administration of 17β-estradiol (E2) protects cardiovascular injury from trauma-hemorrhage, the mechanism by which E2 produces those effects remains unknown. Our objective was to determine whether the E2-mediated activation of myocardial p38 MAPK and subsequent eNOS expression/phosphorylation would protect the heart following trauma-hemorrhage. To study this, male Sprague-Dawley rats underwent soft-tissue trauma (midline laparatomy) and hemorrhagic shock (mean blood pressure 35–40 mmHg for 90 min), followed by fluid resuscitation. Animals were pretreated with specific p38 MAPK inhibitor SB-203580 (SB; 2 mg/kg), and nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 30 mg/kg) 30 min before vehicle (cyclodextrin) or E2 (100 μg/kg) treatment, followed by resuscitation, and were killed 2 h thereafter. Cardiovascular performance and other parameters were measured. E2 administration following trauma-hemorrhage increased cardiac p38 MAPK activity, eNOS expression and phosphorylation at Ser1177, and nitrate/nitrite levels in plasma and heart tissues; these were associated with normalized cardiac performance, which was reversed by SB administration. In addition, E2 also prevented trauma-hemorrhage-induced increase in cytokines (IL-6 and TNF-α), chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant-1), and ICAM-1, which was reversed by l-NAME administration. Administration of E2 following trauma-hemorrhage attenuated cardiac tissue injury markers, myeloperoxidase activity, and nitrotyrosine level, which were reversed by treatment with SB and l-NAME. The salutary effects of E2 on cardiac functions and tissue protection following trauma-hemorrhage are mediated, in part, through activation of p38 MAPK and subsequent eNOS expression and phosphorylation.


2021 ◽  
Author(s):  
Thiele Osvaldt Rosales ◽  
Verônica Vargas Horewicz ◽  
Marcella Amorim Ferreira ◽  
Geisson Marcos Nardi ◽  
Jamil Assreuy

Renal vascular reactivity to vasoconstrictors is preserved in sepsis in opposition to what happens in the systemic circulation. We studied whether this distinct behavior was related to α1 adrenergic receptor density, G protein-coupled receptor kinase 2 (GRK2) and the putative role of nitric oxide (NO). Sepsis was induced in female mice by cecal ligation and puncture (CLP). Wild-type mice were treated with prazosin 12 hours after CLP or NOS-2 inhibitor, 30 min before and 6 and 12 hours after CLP. In vivo experiments and biochemistry assays were performed 24 hours after CLP. Sepsis decreased the systemic mean arterial pressure and the vascular reactivity to phenylephrine. Sepsis also reduced basal renal blood flow which was normalized by treatment with prazosin. Sepsis led to a substantial decreased in GRK2 level associated to an increase in α1 adrenergic receptor density in the kidney. The disappearance of renal GRK2 was prevented in NOS-2-KO mice or mice treated with 1400W. Treatment of non-septic mice with a NO donor reduced GRK2 content in the kidney. Therefore, our results show that a NO-dependent reduction in GRK2 level in the kidney leads to the maintenance of a normal α1 adrenergic receptor density, probably. The preservation of the density and/or functionality of this receptor in the kidney together with a higher vasoconstrictor tonus in sepsis lead to vasoconstriction. Thus, the increased concentration of vasoconstrictor mediators together with the preservation (and even increase) of the response to them may help to explain sepsis-induced acute kidney injury.


1990 ◽  
Vol 259 (2) ◽  
pp. H574-H581 ◽  
Author(s):  
M. J. Lew ◽  
B. R. Duling

The endothelium of the hamster cheek pouch arteriole in vitro is able to greatly reduce the potency of luminally applied water-soluble drugs by acting as a barrier to diffusion from the lumen to the smooth muscle [Lew, Rivers, and Duling. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H10-H16, 1989]. Lipid-soluble drugs appear unaffected by the diffusion barrier, presumably because their ability to cross cell membranes allows them to freely cross the endothelium. We compared the effects of two alpha 1-adrenoceptor agonists, phenylephrine (water soluble) and SKF 89748A (lipid soluble), on systemic blood pressure and the arterioles of the hamster cheek pouch in vivo. Both agonists were able to activate the arterioles when applied topically to the outside of the arterioles (extraluminal application). The agonists were also injected as a brief bolus into the aortic arch at doses chosen to elicit similar peak pressor responses. At all levels of pressor response, the arteriolar responses to phenylephrine were smaller than those to SKF 89748A. In the cremasteric vasculature SKF 89748A was similarly found to be more effective in activating the arterioles after intravascular administration than was phenylephrine. We conclude that an intramural diffusion barrier exists in the arteriolar wall in vivo and that it can influence vascular reactivity.


1990 ◽  
Vol 258 (1) ◽  
pp. F211-F217
Author(s):  
M. D. Garr ◽  
M. S. Paller

Renal vasoconstriction and hypertension are major side effects of cyclosporine. We tested the acute effects of cyclosporine on renal and systemic vascular reactivity to norepinephrine, angiotensin II, and arginine vasopressin. Renal vascular reactivity was tested in anesthetized Sprague-Dawley rats with denervated kidneys. Renal blood flow was measured with an electromagnetic flow probe in response to graded intra-arterial infusions of vasoconstrictors before and after intravenous administration of cyclosporine. Cyclosporine augmented the decrease in renal blood flow and the increase in renal vascular resistance produced by intrarenal norepinephrine, angiotensin II, and arginine vasopressin. In these studies, systemic blood pressure did not change and cyclosporine caused no direct change in basal renal blood flow. In contrast, in conscious animals, cyclosporine did not increase the pressor response to intravenous norepinephrine or to angiotensin II. Rather, cyclosporine caused enhanced baroreflex slowing of heart rate and a decrease in the pressor response to both norepinephrine and angiotensin II. Even when the baroreceptor reflex was blocked by pentolinium, the pressor response to norepinephrine in cyclosporine-treated animals was diminished compared with vehicle-treated animals. Therefore, although cyclosporine augmented renal vasoconstriction in response to norepinephrine, angiotensin II, and arginine vasopressin, it did not acutely increase the systemic vascular response to these agents. Enhanced renal vascular responsiveness is an additional mechanism for cyclosporine-mediated renal vasoconstriction. Lack of enhanced peripheral vascular responsiveness suggests that hypertension is not likely to be due to direct effects on the systemic vasculature and is more likely to be a consequence of renal functional impairment.


Sign in / Sign up

Export Citation Format

Share Document