Effects of forearm bier block with bretylium on the hemodynamic and metabolic responses to handgrip

2000 ◽  
Vol 279 (2) ◽  
pp. H586-H593 ◽  
Author(s):  
Frank Lee ◽  
J. Kevin Shoemaker ◽  
Patrick M. McQuillan ◽  
Allen R. Kunselman ◽  
Michael B. Smith ◽  
...  

We tested the hypothesis that a reduction in sympathetic tone to exercising forearm muscle would increase blood flow, reduce muscle acidosis, and attenuate reflex responses. Subjects performed a progressive, four-stage rhythmic handgrip protocol before and after forearm bier block with bretylium as forearm blood flow (Doppler) and metabolic (venous effluent metabolite concentration and 31P-NMR indexes) and autonomic reflex responses (heart rate, blood pressure, and sympathetic nerve traffic) were measured. Bretylium inhibits the release of norepinephrine at the neurovascular junction. Bier block increased blood flow as well as oxygen consumption in the exercising forearm ( P < 0.03 and P < 0.02, respectively). However, despite this increase in flow, venous K+ release and H+release were both increased during exercise ( P < 0.002 for both indexes). Additionally, minimal muscle pH measured during the first minute of recovery with NMR was lower after bier block (6.41 ± 0.08 vs. 6.20 ± 0.06; P < 0.036, simple effects). Meanwhile, reflex effects were unaffected by the bretylium bier block. The results support the conclusion that sympathetic stimulation to muscle during exercise not only limits muscle blood flow but also appears to limit anaerobiosis and H+ release, presumably through a preferential recruitment of oxidative fibers.

1976 ◽  
Vol 41 (6) ◽  
pp. 826-831 ◽  
Author(s):  
J. M. Johnson ◽  
G. L. Brengelmann ◽  
L. B. Rowell

A three-part experiment was designed to examine interactions between local and reflex influences on forearm skin blood flow (SkBF). In part I locally increasing arm skin temperature (Tsk) to 42.5 degrees C was not associated with increases in underlying forearm muscle blood flow, esophageal temperature (Tes), or forearm blood flow in the contralateral cool arm. In part II whole-body Tsk was held at 38 or 40 degrees C and the surface temperature of one arm held at 38 or 42 degrees C for prolonged periods. SkBF in the heated arm rose rapidly with the elevation in body Tsk and arm Tsk continued to rise as Tes rose. SkBF in the arm kept at 32 degrees C paralleled rising Tes. In six studies, SkBF in the cool arm ultimately converged with SkBF in the heated arm. In eight other studies, heated arm SkBF maintained an offset above cool arm SkBF throughout the period of whole-body heating. In part III, local arm Tsk of 42.5 degrees C did not abolish skin vasoconstrictor response to lower body negative pressure. We conclude that local and reflex influences to skin interact so as to modify the degree but not the pattern of skin vasomotor response.


1964 ◽  
Vol 42 (2) ◽  
pp. 199-207 ◽  
Author(s):  
F. A. Sunahara ◽  
W. H. Johnson ◽  
N. B. G. Taylor

Forty-six adult male subjects have been exposed to strong vestibular stimulation produced by controlled cyclic nodding of the head while being rotated in the horizontal plane on a turntable at constant angular velocity. Forearm blood flow was measured with a mercury-in-rubber strain gauge plethysmograph standardized against a conventional plethysmographic technique. There was wide variability among the subjects in the amount of vestibular stimulation needed to cause nausea just short of emesis. Motion sickness, when unequivocal, was accompanied by increased blood flow in the forearm and nearly always by an increase in the circumference of the forearm when venous flow was not occluded. Resistant subjects, in whom motion sickness was either minimal or not apparent, showed either no increase in forearm blood flow or increases that were equivocal. It is concluded that increased muscle blood flow may now be added to antidiuresis, nausea, pallor, and sweating, as a physiological response common to the vasovagal syndrome and to motion sickness caused by vestibular stimulation. A possible explanation of the results and their relation to aviation are discussed.


1990 ◽  
Vol 78 (5) ◽  
pp. 527-532 ◽  
Author(s):  
M. L. Bartelink ◽  
H. Wollersheim ◽  
A. Theeuwes ◽  
D. van Duren ◽  
Th. Thien

1. It is known that females have a lower skin perfusion than males. In women there are also differences in blood flow at different reproductive stages of their lives. As an initial investigation of the possible contribution of sex hormones to these differences, we studied skin and forearm blood flow during the natural changes in hormone levels which occur during the menstrual cycle. 2. Thirty-one healthy female volunteers were studied. The effect of a standardized finger cooling test (immersion of a gloved hand in a 16°C water bath) on finger skin temperature and on laser Doppler flux in the finger, and forearm blood flow (strain gauge venous occlusion plethysmography) was assessed at four different times during one cycle: during menstruation, 1 day before ovulation, 2 days after ovulation and at the mid-luteal phase. Test days were determined by daily measurements of basal body temperature and were confirmed afterwards by determinations of serum luteinizing hormone, follicle-stimulating hormone, 17β-oestradiol and progesterone. 3. Peripheral skin circulation varied significantly within one menstrual cycle. The extremes were a mean finger skin temperature of 25.9 ± 3.0°C in the luteal phase compared with 28.4 ± 3.7°C in the pre-ovulatory phase (P = 0.002). The respective values for the mean laser Doppler flux were 18.4 ± 10.9 compared with 29.2 ± 16.4 arbitrary units (P = 0.003). 4. Baseline forearm muscle blood flow also varied significantly (P = 0.04) within one menstrual cycle, with low values in the menstrual phase compared with the other phases. 5. In conclusion, we have shown that peripheral skin circulation and forearm muscle blood flow exhibit significant variability during the hormonal changes in a menstrual cycle.


1996 ◽  
Vol 80 (1) ◽  
pp. 341-344 ◽  
Author(s):  
M. Scuri ◽  
V. McCaskill ◽  
A. D. Chediak ◽  
W. M. Abraham ◽  
A. Wanner

The reported effects of cholinergic agonists on bronchial blood flow (Qbr) have been inconsistent. The aim of the present study was to determine whether the inconsistency could be due to the mode of agonist administration (systemic vs. aerosol) or the anatomic site of blood flow in the bronchus (mucosal vs. deep wall). In 10 anesthetized mechanically ventilated adult sheep, we measured Qbr in main bronchi by color-coded microspheres, systemic and pulmonary arterial pressures, cardiac output, and lung resistance (RL) before and after acetylcholine (ACh) administered either as an aerosol (nebulized dose 100 micrograms) or as an intravenous bolus (2 micrograms/kg). Before drug administration, 72% of mean Qbr was distributed to the bronchial mucosa and the remainder was distributed to the deep bronchial wall. For a comparable increase in mean RL (150% for intravenous ACh and 205% for aerosol ACh), mean total Qbr normalized for systemic arterial pressure increased by 291% after intravenous ACh (P < 0.05) and decreased by 9% after aerosol ACh (not significant). Mucosal and deep wall Qbr increased proportionally. Atropine (0.2 microgram/kg) prevented the changes in Qbr and RL after intravenous ACh. Thus intravenous but not aerosol ACh increased blood flow in the mucosa and deep wall of extrapulmonary bronchi. This suggests that the muscarinic receptors mediating vasodilation are more accessible to intravascular than intrabronchial ACh.


1997 ◽  
Vol 92 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Masanari Shiramoto ◽  
Tsutomu Imaizumi ◽  
Yoshitaka Hirooka ◽  
Toyonari Endo ◽  
Takashi Namba ◽  
...  

1. It has been shown in animals that substance P as well as acetylcholine releases endothelium-derived nitric oxide and evokes vasodilatation and that ATP-induced vasodilatation is partially mediated by nitric oxide. The aim of this study was to examine whether vasodilator effects of substance P and ATP are mediated by nitric oxide in humans. 2. In healthy volunteers (n = 35), we measured forearm blood flow by a strain-gauge plethysmograph while infusing graded doses of acetylcholine, substance P, ATP or sodium nitroprusside into the brachial artery before and after infusion of NG-monomethyl-l-arginine (4 or 8 μmol/min for 5 min). In addition, we measured forearm blood flow while infusing substance P before and during infusion of l-arginine (10 mg/min, simultaneously), or before and 1 h after oral administration of indomethacin (75 mg). 3. Acetylcholine, substance P, ATP or sodium nitroprusside increased forearm blood flow in a dose-dependent manner. NG-Monomethyl-l-arginine decreased basal forearm blood flow and inhibited acetylcholine-induced vasodilatation but did not affect substance P-, ATP-, or sodium nitroprusside-induced vasodilatation. Neither supplementation of l-arginine nor pretreatment with indomethacin affected substance P-induced vasodilatation. 4. Our results suggest that, in the human forearm vessels, substance P-induced vasodilatation may not be mediated by either nitric oxide or prostaglandins and that ATP-induced vasodilatation may also not be mediated by nitric oxide.


1968 ◽  
Vol 114 (516) ◽  
pp. 1371-1376 ◽  
Author(s):  
M. G. Gelder ◽  
A. M. Mathews

The measurement of muscle blood flow using occlusive plethysmography has recently been proposed as an objective index of anxiety (Harper et al., 1965; Kelly, 1966, 1967). Although the method has been used by physiologists for many years, and its sensitivity to psychological stress has often been mentioned as an incidental finding in physiological studies, its application in psychiatric or psychological research has been slow to develop, perhaps because rather cumbersome apparatus is required. However, promising results were reported by Kelly (1966), who differentiated patients suffering from anxiety states from mixed neurotic patients and normal controls, and who showed changes after leucotomy in anxious patients.


1994 ◽  
Vol 87 (5) ◽  
pp. 559-566 ◽  
Author(s):  
E. E. Blaak ◽  
M. A. van Baak ◽  
G. J. Kemerink ◽  
M. T. W. Pakbiers ◽  
G. A. K. Heidendal ◽  
...  

1. In studying forearm skeletal muscle substrate exchange, an often applied method for estimating skeletal muscle blood flow is strain gauge plethysmography. A disadvantage of this method is that it only measures total blood flow through a segment of forearm and not the flow through the individual parts such as skin, adipose tissue and muscle. 2. In the present study the contribution of forearm subcutaneous adipose tissue blood flow to total forearm blood flow was evaluated in lean (% body fat 17.0 ± 2.2) and obese males (% body fat 30.9 ± 1.6) during rest and during infusion of the non-selective β-agonist isoprenaline. Measurements were obtained of body composition (hydrostatic weighing), forearm composition (magnetic resonance imaging) and of total forearm (venous occlusion plethysmography), skin (skin blood flow, laser Doppler), and subcutaneous adipose tissue blood flow (133Xe washout technique). 3. The absolute forearm area and the relative amount of fat (% of forearm area) were significantly higher in obese as compared to lean subjects, whereas the relative amounts of muscle and skin were similar. 4. During rest, the percentage contribution of adipose tissue blood flow to total forearm blood flow was significantly higher in lean compared with obese subjects (19 vs 12%, P < 0.05), whereas there were no differences in percentage contribution between both groups during isoprenaline infusion (10 vs 13%). Furthermore, the contribution of adipose tissue blood flow to total forearm blood flow was significantly lower during isoprenaline infusion than during rest in lean subjects (P < 0.05), whereas in the obese this value was similar during rest and during isoprenaline infusion. 5. In conclusion, although the overall contribution of adipose tissue blood flow to total forearm blood flow seems to be relatively small, the significance of this contribution may vary with degree of adiposity. Calculations on the contribution of adipose tissue blood flow and SBF to total forearm blood flow indicate that the contribution of non-muscular flow to total forearm blood flow may be of considerable importance and may amount in lean subjects to 35–50% of total forearm blood flow in the resting state.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2328-2328
Author(s):  
A. Kyle Mack ◽  
Roberto F. Machado ◽  
Vandana Sachdev ◽  
Mark T. Gladwin ◽  
Gregory J. Kato

Abstract Patients with sickle cell disease have decreased nitric oxide bioavailability, and studies from several groups have confirmed a blunted response to various NO donors in humans and mice with sickle cell disease. Recently published studies show that nitrite induces vasodilation in humans, apparently mediated by conversion of nitrite to NO. This study is designed to determine the potential therapeutic effect of intra-arterial nitrite infusion to restore nitric oxide dependent blood flow in the forearms of patients with sickle cell disease. Venous occlusion strain gauge plethysmography is used to measure the change of forearm blood flow in patients with sickle cell disease, before and after sequential brachial artery infusions of increasing doses of sodium nitrite. In addition, NO responsiveness before and after nitrite infusion is measured by test doses of the NO donor sodium nitroprusside (SNP). Six patients have completed the study and enrollment is continuing. These data indicate that nitrite promotes regional blood flow in patients with sickle cell disease, albeit with a blunted response compared to our healthy control subjects, in whom we previously have found increased blood flow up to 187% with comparable dosing. The significant but blunted response is consistent with the state of nitric oxide resistance to NO donors that has been seen by several groups in patients and mice with SCD. Additionally, we find in these patients that nitrite partially restores SNP responsiveness, with baseline maximal SNP responses more than doubling on average following nitrite infusion, although this finding is preliminary. No adverse effects of nitrite were seen in these six patients. Our early results support a role for nitrite as an NO donor effective in restoring NO-dependent blood flow in patients with sickle cell disease. Additional translational studies are warranted to evaluate the therapeutic effects of systemic nitrite dosing. Table 1. Forearm Blood Flow Response to Nitrite Infusion Nitrite Dose (micromole/min) Sickle Cell Disease Historical Controls P&lt; .0001 (ANOVA) 0.4 5 +/−7.2% N=6 22 +/−3.2% N=10 4 15 +/− 11% N=6 Not infused 40 49 +/− 8.9% N=6 187 +/− 16%N=18 Table 2. Nitrite Effect on Nitroprusside Responsiveness SNP Dose (micrograms/min) Pre-Nitrite Post-Nitrite P= .02 (RM-ANOVA) N=6 0.8 +21 +/− 5.6% +33 +/− 8.3% 1.6 +15 +/− 5.9% +62 +/− 15.1% 3.2 +29 +/− 6.3% +67 +/− 11.5%


1999 ◽  
Vol 31 (Supplement) ◽  
pp. S279
Author(s):  
R. L. Hughson ◽  
M. J. MacDonald ◽  
H. L. Naylor ◽  
M. E. Tschakovsky

1983 ◽  
Vol 245 (1) ◽  
pp. R110-R116
Author(s):  
R. Jevning ◽  
A. F. Wilson ◽  
J. P. O'Halloran ◽  
R. N. Walsh

We have measured forearm oxygen consumption and blood flow changes during two wakeful rest behaviors. We have observed acute reduction of forearm respiration (28%) during an acute stylized rest state (TM) and a nonsignificant small decline (11%) during unstylized ordinary eyes-closed rest. These changes were not associated with significant change of forearm blood flow or glycolytic metabolism. Hence, forearm oxygen consumption decline was due almost solely to decreased rate of oxygen extraction. Small variation of forearm blood flow implies that little of the previous findings of increased nonrenal, nonhepatic circulation during TM or increased nonrenal circulation during ordinary rest can be accounted for by altered muscle blood flow, which therefore is consistent with possible increased cerebral blood flow. However, reduced muscle metabolism was a likely contributor to the forearm metabolic decline. The lack of coupling between metabolic and blood flow changes during TM indicates limitation of obligatory coupling between cardiovascular and metabolic function in the rest state of TM.


Sign in / Sign up

Export Citation Format

Share Document