Gender affects sympathetic and hemodynamic response to postural stress

2001 ◽  
Vol 281 (5) ◽  
pp. H2028-H2035 ◽  
Author(s):  
J. Kevin Shoemaker ◽  
Cynthia S. Hogeman ◽  
Mazhar Khan ◽  
Derek S. Kimmerly ◽  
Lawrence I. Sinoway

We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males ( n = 9) and females ( n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20°, 40°, and 60°). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SVi) to calculate the index of cardiac output (Qi), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males ( P < 0.001) and SVi and Qi decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT ( P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine ( P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60° HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (ΔTotal MSNA) due to a larger increase in mean burst amplitude ( P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.

2001 ◽  
Vol 281 (3) ◽  
pp. H1040-H1046 ◽  
Author(s):  
J. Kevin Shoemaker ◽  
Debbie D. O'Leary ◽  
Richard L. Hughson

Arterial hypocapnia has been associated with orthostatic intolerance. Therefore, we tested the hypothesis that hypocapnia may be detrimental to increases in muscle sympathetic nerve activity (MSNA) and total peripheral resistance (TPR) during head-up tilt (HUT). Ventilation was increased ∼1.5 times above baseline for each of three conditions, whereas end-tidal Pco 2 (Pet CO2 ) was clamped at normocapnic (Normo), hypercapnic (Hyper; +5 mmHg relative to Normo), and hypocapnic (Hypo; −5 mmHg relative to Normo) conditions. MSNA (microneurography), heart rate, blood pressure (BP, Finapres), and cardiac output (Q, Doppler) were measured continuously during supine rest and 45° HUT. The increase in heart rate when changing from supine to HUT ( P < 0.001) was not different across Pet CO2 conditions. MSNA burst frequency increased similarly with HUT in all conditions ( P < 0.05). However, total MSNA and the increase in total amplitude relative to baseline (%ΔMSNA) increased more when changing to HUT during Hypo compared with Hyper ( P < 0.05). Both BP and Q were higher during Hyper than both Normo and Hypo (main effect; P < 0.05). Therefore, the MSNA response to HUT varied inversely with levels of Pet CO2 . The combined data suggest that augmented cardiac output with hypercapnia sustained blood pressure during HUT leading to a diminished sympathetic response.


2002 ◽  
Vol 282 (5) ◽  
pp. H1717-H1723 ◽  
Author(s):  
Jian Cui ◽  
Thad E. Wilson ◽  
Craig G. Crandall

The purpose of this project was to test the hypothesis that baroreceptor modulation of muscle sympathetic nerve activity (MSNA) and heart rate is altered during the cold pressor test. Ten subjects were exposed to a cold pressor test by immersing a hand in ice water for 3 min while arterial blood pressure, heart rate, and MSNA were recorded. During the second and third minute of the cold pressor test, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative ( P < 0.005) during the cold pressor test (−244.9 ± 26.3 units · beat−1 · mmHg−1) when compared with control conditions (−138.8 ± 18.6 units · beat−1 · mmHg−1), whereas no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that baroreceptors remain capable of modulating MSNA and heart rate during a cold pressor test; however, the sensitivity of baroreflex modulation of MSNA is elevated without altering the sensitivity of baroreflex control of heart rate.


1985 ◽  
Vol 69 (5) ◽  
pp. 533-540 ◽  
Author(s):  
Gianfranco Parati ◽  
Guido Pomidossi ◽  
Agustin Ramirez ◽  
Bruno Cesana ◽  
Giuseppe Mancia

1. In man evaluation of neural cardiovascular regulation makes use of a variety of tests which address the excitatory and reflex inhibitory neural influences that control circulation. Because interpretation of these tests is largely based on the magnitude of the elicited haemodynamic responses, their reproducibility in any given subject is critical. 2. In 39 subjects with continuous blood pressure (intra-arterial catheter) and heart rate monitoring we measured (i) the blood pressure and heart rate rises during hand-grip and cold-pressor test, (ii) the heart rate changes occurring during baroreceptor stimulation and deactivation by injection of phenylephrine and trinitroglycerine, and (iii) the heart rate and blood pressure changes occurring with alteration in carotid baroreceptor activity by a neck chamber. Each test was carefully standardized and performed at 30 min intervals for a total of six times in each subject. 3. The results showed that the responses to any test were clearly different from one another and that this occurred in all subjects studied. For the group as a whole the average response variability (coefficient of variation) ranged from 10.2% for the blood pressure response to carotid baroreceptor stimulation to 44.2% for the heart rate response to cold-pressor test. The variability of the responses was not related to basal blood pressure or heart rate, nor to the temporal sequence of the test performance. 4. Thus tests employed for studying neural cardiovascular control in man produce responses whose reproducibility is limited. This phenomenon may make it more difficult to define the response magnitude typical of each subject, as well as its comparison in different conditions and diseases.


1993 ◽  
Vol 75 (2) ◽  
pp. 663-667 ◽  
Author(s):  
M. Saito ◽  
A. Tsukanaka ◽  
D. Yanagihara ◽  
T. Mano

The aim of this study was to clarify the relationship between sympathetic outflow to skeletal muscle and oxygen uptake during dynamic exercise. Muscle sympathetic nerve activity (MSNA) was recorded from the right median nerve microneurographically in eight healthy volunteers during leg cycling at four different intensities in a seated position for a 16-min bout. Work loads selected were 20, 40, 60, and 75% of maximal oxygen uptake (VO2max). Heart rate and blood pressure were measured during each exercise test. MSNA burst frequency was suppressed by 28% during cycling at 20% VO2max (23 vs. 33 bursts/min for control). Thereafter, it increased in a linear fashion with increasing work rate, with a significantly higher burst frequency during 60% VO2max than the control value. Both heart rate and mean blood pressure rose significantly during 20% VO2max from the control value and increased linearly with increased exercise intensity. During light exercise, MSNA was suppressed by arterial and cardiopulmonary baroreceptors as a result of the hemodynamic changes associated with leg muscle pumping. The baroreflex inhibition may overcome the muscle metaboreflex excitation to induce MSNA suppression during light exercise. These results suggest that during light exercise MSNA is inhibited, perhaps due to loading of the cardiopulmonary and arterial baroreflexes, and that during heavier exercise the increase in MSNA occurs as muscle metaboreflexes are activated.


1993 ◽  
Vol 3 (5) ◽  
pp. 303-310 ◽  
Author(s):  
Frank Weise ◽  
Dominique Laude ◽  
Arlette Girard ◽  
Philippe Zitoun ◽  
Jean-Philippe Siché ◽  
...  

2018 ◽  
Vol 120 (4) ◽  
pp. 1516-1524 ◽  
Author(s):  
Jeann L. Sabino-Carvalho ◽  
André L. Teixeira ◽  
Milena Samora ◽  
Maurício Daher ◽  
Lauro C. Vianna

Patients with Parkinson’s disease (PD) exhibit attenuated cardiovascular responses to exercise. The underlying mechanisms that are potentially contributing to these impairments are not fully understood. Therefore, we sought to test the hypothesis that patients with PD exhibit blunted cardiovascular responses to isolated muscle metaboreflex activation following exercise. For this, mean blood pressure, cardiac output, and total peripheral resistance were measured using finger photoplethysmography and the Modelflow method in 11 patients with PD [66 ± 2 yr; Hoehn and Yahr score: 2 ± 1 a.u.; time since diagnosis: 7 ± 1 yr; means ± SD) and 9 age-matched controls (66 ± 3 yr). Measurements were obtained at rest, during isometric handgrip exercise performed at 40% maximal voluntary contraction, and during postexercise ischemia. Also, a cold pressor test was assessed to confirm that blunted cardiovascular responses were specific to exercise and not representative of generalized sympathetic responsiveness. Changes in mean blood pressure were attenuated in patients with PD during handgrip (PD: ∆25 ± 2 mmHg vs. controls: ∆31 ± 3 mmHg; P < 0.05), and these group differences remained during postexercise ischemia (∆17 ± 1 mmHg vs. ∆26 ± 1 mmHg, respectively; P < 0.01). Additionally, changes in total peripheral resistance were attenuated during exercise and postexercise ischemia, indicating blunted reflex vasoconstriction in patients with PD. Responses to cold pressor test did not differ between groups, suggesting no group differences in generalized sympathetic responsiveness. Our results support the concept that attenuated cardiovascular responses to exercise observed in patients with PD are, at least in part, explained by an altered skeletal muscle metaboreflex. NEW & NOTEWORTHY Patients with Parkinson’s disease (PD) presented blunted cardiovascular responses to exercise. We showed that cardiovascular response evoked by the metabolic component of the exercise pressor reflex is blunted in patients with PD. Furthermore, patients with PD presented similar pressor response during the cold pressor test compared with age-matched controls. Altogether, our results support the hypothesis that attenuated cardiovascular responses to exercise observed in patients with PD are mediate by an altered skeletal muscle metaboreflex.


2007 ◽  
Vol 5;10 (9;5) ◽  
pp. 677-685
Author(s):  
David M. Schultz

Background: Several animal studies support the contention that thoracic spinal cord stimulation (SCS) might decrease arterial blood pressure. Objective: To determine if electrical stimulation of the dorsal spinal cord in humans will lower mean arterial pressure (MAP) and heart rate (HR). Design: Case Series Methods: Ten normotensive subjects that were clinically indicated for SCS testing were studied. Two of the 10 patients who underwent testing were excluded from the analysis because they did not respond to the Cold Pressor Test (CPT). Systolic blood pressure, diastolic blood pressure, and heart rate were measured continuously at the wrist (using the Vasotrac device). SCS was administered with quadripolar leads implanted into the epidural space under fluoroscopic guidance. SCS was randomly performed either in the T1-T2 or T5-T6 region of the spinal cord during normal conditions as well as during transient stress induced by CPT. The CPT was conducted by immersing the non-dominant hand in ice-cold water for 2 minutes. Results: There were moderate decreases in MAP and HR during SCS at the T5-T6 region compared to baseline that did not reach statistical significance. However, SCS at the T1-T2 region tended to increase MAP and HR compared to baseline but the change did not reach statistical significance. Arterial blood pressure was transiently elevated by 9.4 ± 3.8 mmHg using CPT during the control period with SCS turned off and also during SCS at either the T1-T2 region or T5-T6 region of the spinal cord (by 9.2 ± 5 mmHg and 10.7 ± 8.4 mmHg, respectively). During SCS at T5-T6, the CPT significantly increased MAP by 5.9±7.1 mmHg compared to control CPT (SCS off). Conclusion: This study demonstrated that SCS at either the T1-T2 or T5-T6 region did not significantly alter MAP or HR compared to baseline (no SCS). However, during transcient stress (elevated sympathetic tone) induced by CPT, there was a significant increase in MAP and moderate decrease in HR during SCS at T5-T6 region, which is not consistent with previous data in the literature. Acute SCS did not result in adverse cardiovascular responses and proved to be safe. Key words: Spinal cord stimulation, mean arterial pressure, heart rate, cold pressor test


Sign in / Sign up

Export Citation Format

Share Document