Membrane depolarization, elevated Ca2+ entry, and gene expression in cerebral arteries of hypertensive rats

2001 ◽  
Vol 281 (6) ◽  
pp. H2559-H2567 ◽  
Author(s):  
G. C. Wellman ◽  
L. Cartin ◽  
D. M. Eckman ◽  
A. S. Stevenson ◽  
C. M. Saundry ◽  
...  

Elevated intracellular Ca2+([Ca2+]i) has been implicated in contractile and phenotypic changes in arterial smooth muscle during hypertension. This study examined the role of membrane potential and [Ca2+]i in altered gene expression in cerebral arteries of a rat (Dahl) genetic model of salt-sensitive hypertension. Cerebral arteries from hypertensive animals (Dahl salt-sensitive) exhibited a tonic membrane depolarization of ∼15 mV compared with normotensive (Dahl salt-resistant) animals. Consistent with this membrane depolarization, voltage-dependent K+currents were decreased in cerebral artery myocytes isolated from hypertensive animals. Arterial wall Ca2+ was elevated in cerebral arteries from hypertensive animals, an effect reversed by diltiazem, a blocker of voltage-dependent Ca2+ channels. This depolarization-induced increase in [Ca2+]i was associated with increased activation of the transcription factor, cAMP response element binding protein, and increased expression of the immediate early gene c-fos, both of which are reversed by acute exposure to the voltage-dependent Ca2+ channel blocker nisoldipine. This study provides the first information linking altered Ca2+handling to changes in gene expression in cerebral arteries during hypertension.

1999 ◽  
Vol 276 (1) ◽  
pp. C54-C65 ◽  
Author(s):  
Volodia D. Gueorguiev ◽  
Richard J. Zeman ◽  
Bhargava Hiremagalur ◽  
Ana Menezes ◽  
Esther L. Sabban

The involvement of cAMP- and Ca2+-mediated pathways in the activation of tyrosine hydroxylase (TH) gene expression by nicotine was examined in PC-12 cells. Extracellular Ca2+ and elevations in intracellular Ca2+ concentration ([Ca2+]i) were required for nicotine to increase TH mRNA. The nicotine-elicited rapid rise in [Ca2+]iwas inhibited by blockers of either L-type or N-type, and to a lesser extent P/Q-, but not T-type, voltage-gated Ca2+ channels. With continual nicotine treatment, [Ca2+]ireturned to basal levels within 3–4 min. After a lag of ∼5–10 min, there was a smaller elevation in [Ca2+]ithat persisted for 6 h and displayed different responsiveness to Ca2+ channel blockers. This second phase of elevated [Ca2+]iwas blocked by an inhibitor of store-operated Ca2+ channels, consistent with the observed generation of inositol trisphosphate. 1,2-Bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM (BAPTA-AM), when added before or 2 h after nicotine, prevented elevation of TH mRNA. Nicotine treatment significantly raised cAMP levels. Addition of the adenylyl cyclase inhibitor 2′,5′-dideoxyadenosine (DDA) prevented the nicotine-elicited phosphorylation of cAMP response element binding protein. DDA also blocked the elevation of TH mRNA only when added after the initial transient rise in [Ca2+]iand not after 1 h. This study reveals that several temporal phases are involved in the induction of TH gene expression by nicotine, each of them with differing requirements for Ca2+ and cAMP.


1993 ◽  
Vol 264 (2) ◽  
pp. H470-H478 ◽  
Author(s):  
J. M. Quayle ◽  
J. G. McCarron ◽  
J. R. Asbury ◽  
M. T. Nelson

Unitary currents through single calcium channels were measured from cell-attached patches on smooth muscle cells isolated from resistance-sized branches of posterior cerebral arteries from Wistar-Kyoto normotensive rats. Barium (80 and 10 mM) was used as the charge carrier, with and without the dihydropyridine calcium channel agonist BAY R 5417. Unitary currents decreased on membrane depolarization, with a slope conductance of 19.4 pS (80 mM barium). Channel open-state probability (Po) was steeply voltage dependent. Peak Po during test pulses from -70 mV increased e-fold per 4.5-mV depolarization. Mean peak Po at potentials positive to +10 mV was 0.44. Po at steady membrane potentials was also steeply voltage dependent, changing e-fold per 4.5 mV in the absence of inactivation. Steady-state Po at positive potentials was substantially lower than peak Po elicited by test pulses, suggesting that steady-state inactivation can reduce Po by as much as 10-fold. Membrane depolarization decreased the longest mean closed time but had little effect on the mean open time of single calcium channels measured during steady-state recordings. Lowering the external barium concentration from 80 to 10 mM reduced the single channel conductance to 12.4 pS and shifted the relationship between steady-state Po and membrane potential by about -30 mV. BAY R 5417 also shifted this relationship by about -15 mV.


2003 ◽  
Vol 284 (6) ◽  
pp. C1438-C1447 ◽  
Author(s):  
Maria Angélica Carrasco ◽  
Nora Riveros ◽  
Juan Rı́os ◽  
Marioly Müller ◽  
Francisco Torres ◽  
...  

The signaling mechanisms by which skeletal muscle electrical activity leads to changes in gene expression remain largely undefined. We have reported that myotube depolarization induces calcium signals in the cytosol and nucleus via inositol 1,4,5-trisphosphate (IP3) and phosphorylation of both ERK1/2 and cAMP-response element-binding protein (CREB). We now describe the calcium dependence of P-CREB and P-ERK induction and of the increases in mRNA of the early genes c- fos, c- jun, and egr-1. Increased phosphorylation and early gene activation were maintained in the absence of extracellular calcium, while the increase in intracellular calcium induced by caffeine could mimic the depolarization stimulus. Depolarization performed either in the presence of the IP3 inhibitors 2-aminoethoxydiphenyl borate or xestospongin C or on cells loaded with BAPTA-AM, in which slow calcium signals were abolished, resulted in decreased activation of the early genes examined. Both early gene activation and CREB phosphorylation were inhibited by ERK phosphorylation blockade. These data suggest a role for calcium in the transcription-related events that follow membrane depolarization in muscle cells.


1998 ◽  
Vol 275 (4) ◽  
pp. G689-G695
Author(s):  
Veronica Prpic ◽  
J. Gregory Fitz ◽  
Yu Wang ◽  
John R. Raymond ◽  
Maria N. Garnovskaya ◽  
...  

It has been demonstrated that K+ channel regulation of membrane potential is critical for control of CCK secretion. Because certain K+ channels are pH sensitive, it was postulated that pH affects K+channel activity in the CCK-secreting cell line STC-1 and may participate in regulating CCK secretion. The present study examines the role of electroneutral Na+/H+exchange on extracellular acidification and hormone secretion. Treatment of STC-1 cells with the amiloride analog ethylisopropyl amiloride (EIPA) to inhibit Na+/H+exchange inhibited Na+-dependent H+ efflux and increased basal CCK secretion. Substituting choline for NaCl in the extracellular medium elevated basal intracellular Ca2+concentration and stimulated CCK release. Stimulatory effects on hormone secretion were blocked by the L-type Ca2+ channel blocker diltiazem, indicating that secretion was dependent on the influx of extracellular Ca2+. To determine whether the effects of EIPA and Na+ depletion were due to membrane depolarization, we tested graded KCl concentrations. The ability of EIPA to increase CCK secretion was inhibited by depolarization induced by 10–50 mM KCl in the bath. Maneuvers to lower intracellular pH (pHi), including reducing extracellular pH (pHo) to 7.0 or treatment with sodium butyrate, significantly increased CCK secretion. To examine whether pH directly affects membrane K+ permeability, we measured outward currents carried by K+, using whole cell patch techniques. K+ current was significantly inhibited by lowering pHo to 7.0. These effects appear to be mediated through changes in pHi, because intracellular dialysis with acidic solutions nearly eliminated current activity. These results suggest that Na+/H+exchange and membrane potential may be functionally linked, where inhibition of Na+/H+exchange lowers pHi and depolarizes the membrane, perhaps through inhibition of pH-sensitive K+ channels. In turn, K+ channel closure and membrane depolarization open voltage-dependent Ca2+ channels, leading to an increase in cytosolic Ca2+ and CCK release. The effects of pHi on K+ channels may serve as a potent stimulus for hormone secretion, linking cell metabolism and secretory functions.


2005 ◽  
Vol 16 (7) ◽  
pp. 3365-3376 ◽  
Author(s):  
Ju-Ming Wang ◽  
Joseph T. Tseng ◽  
Wen-Chang Chang

The CCAAT/enhancer binding protein δ (C/EBPδ, CRP3, CELF, NF-IL6β) regulates gene expression and plays functional roles in many tissues, such as in acute phase response to inflammatory stimuli, adipocyte differentiation, and mammary epithelial cell growth control. In this study, we examined the expression of human C/EBPδ (NF-IL6β) gene by epidermal growth factor (EGF) stimulation in human epidermoid carcinoma A431 cells. NF-IL6β was an immediate-early gene activated by the EGF-induced signaling pathways in cells. By using 5′-serial deletion reporter analysis, we showed that the region comprising the –347 to +9 base pairs was required for EGF response of the NF-IL6β promoter. This region contains putative consensus binding sequences of Sp1 and cAMP response element-binding protein (CREB). The NF-IL6β promoter activity induced by EGF was abolished by mutating the sequence of cAMP response element or Sp1 sites in the –347/+9 base pairs region. Both in vitro and in vivo DNA binding assay revealed that the CREB binding activity was low in EGF-starved cells, whereas it was induced within 30 min after EGF treatment of A431 cells. However, no change in Sp1 binding activity was found by EGF treatment. Moreover, the phosphatidylinositol 3 (PI3)-kinase inhibitor (wortmannin) and p38MAPK inhibitor (SB203580) inhibited the EGF-induced CREB phosphorylation and the expression of NF-IL6β gene in cells. We also demonstrated that CREB was involved in regulating the NF-IL6β gene transcriptional activity mediated by p38MAPK. Our results suggested that PI3-kinase/p38MAPK/CREB pathway contributed to the EGF activation of NF-IL6β gene expression.


Sign in / Sign up

Export Citation Format

Share Document