Force-velocity relationship of myogenically active arterioles

2002 ◽  
Vol 282 (1) ◽  
pp. H165-H174 ◽  
Author(s):  
Michael J. Davis ◽  
Judy Davidson

We compared the shortening velocity of smooth muscle in arterioles that had low or high levels of myogenic tone or norepinephrine (NE)-induced tone. We hypothesized that enhanced myogenic tone of arterioles reflects an enhanced maximum velocity of shortening of arteriolar smooth muscle in a way that is different from that produced by NE. These concepts are untested assumptions of arteriolar mechanics. Second-order arterioles from hamster cheek pouch (passive diameter at 40 mmHg = 42 μm) were isolated and cannulated for in vitro study. In the absence of flow, pressure was controlled by hydraulic pumps so that servo control of wall tension could be achieved from measurement of internal diameter and pressure. Isotonic quick-release protocols were used to measure the initial velocity of shortening following release from control wall tension (afterload) to a series of fractional afterloads. After release, the initial rates of shortening were fit to the Hill equation to obtain coefficients for a hyperbolic fit of the velocity-afterload relationship. The maximal unloaded shortening velocity for partially activated arterioles ( V′max) was determined from the y-intercept of each plot. Using this procedure, we compared V′max from two groups of arterioles equilibrated at low or high pressure, i.e., with low or high myogenic tone. Arterioles with higher myogenic tone had higher values of V′max than arterioles with lower myogenic tone. V′max for arterioles partially activated with NE at low pressure was comparable to V′max for arterioles with high myogenic tone, but NE produced high velocities at low force, whereas enhanced myogenic tone produced roughly parallel shifts in velocity and force. The results suggest that increased myogenic tone does indeed reflect enhanced activation of arteriolar smooth muscle, and this effect is mechanically different from that produced by NE.

1991 ◽  
Vol 260 (2) ◽  
pp. H355-H361 ◽  
Author(s):  
M. R. Hynes ◽  
B. R. Duling

When isolated from the hamster cheek pouch, cannulated, and perfused, 60- to 90-microns arterioles spontaneously contracted to 67 +/- 4% of maximum diameter. Vessel sensitivity to variations in extracellular Ca2+ was then evaluated. Tone, regardless of its source, was highly dependent on the concentration of Ca2+ in the bathing solution. The magnitude of responses to changing Ca2+ depended upon which vessel surface (luminal or abluminal) the change was made. For K(+)-induced tone the Ca2+ concentration-response curve was right shifted 60-fold for luminal vs. abluminal changes. These results suggest that restricted diffusion of Ca2+ from lumen to smooth muscle dramatically reduces smooth muscle Ca2+ concentration and that under standard in vitro conditions the smooth muscle layer is effectively isolated from luminal contents. Both the cytosolic and stored Ca2+ in these microvessels were dependent on the Ca2+ concentration in the bathing solution. Abrupt removal of Ca2+ from bath produced a rapid maximal dilation with a mean time to half-maximal response (t1/2 max) of 14 +/- 4 s. Ca2+ replacement induced a return to the previous level of tone with a mean t1/2 max of 8 +/- 3 s. The magnitude of transient responses to caffeine (10 mM) was inversely related to the time of exposure to zero Ca2+ with a rapid decay in magnitude (t1/2 max = 2.7 +/- 0.8 min). These data suggest that the smooth muscle cells of arterioles have a particularly rapid transmembrane Ca2+ flux that is tightly controlled by an intracellular regulatory mechanism, which may explain the generally increased dependence of smaller vessels on extracellular Ca2+.


2006 ◽  
Vol 101 (1) ◽  
pp. 307-315 ◽  
Author(s):  
Johan Fredrik Brekke ◽  
William F. Jackson ◽  
Steven S. Segal

Intracellular calcium concentration ([Ca2+]i) governs the contractile status of arteriolar smooth muscle cells (SMC). Although studied in vitro, little is known of SMC [Ca2+]i dynamics during the local control of blood flow. We tested the hypothesis that the rise and fall of SMC [Ca2+]i underlies arteriolar constriction and dilation in vivo. Aparenchymal segments of second-order arterioles (diameter 35 ± 2 μm) were prepared in the superfused cheek pouch of anesthetized hamsters ( n = 18) and perifused with the ratiometric dye fura PE-3 (AM) to load SMC (1 μM, 20 min). Resting SMC [Ca2+]i was 406 ± 37 nM. Elevating superfusate O2 from 0 to 21% produced constriction (11 ± 2 μm) that was unaffected by dye loading; [Ca2+]i increased by 108 ± 53 nM ( n = 6, P < 0.05). Cycling of [Ca2+]i during vasomotion (amplitude, 150 ± 53 nM; n = 4) preceded corresponding diameter changes (7 ± 1 μm) by ∼2 s. Microiontophoresis (1 μm pipette tip; 1 μA, 1 s) of phenylephrine (PE) transiently increased [Ca2+]i by 479 ± 64 nM ( n = 8, P < 0.05) with constriction (26 ± 3 μm). Flushing blood from the lumen with saline increased fluorescence at 510 nm by ∼45% during excitation at both 340 and 380 nm with no difference in resting [Ca2+]i, diameter or respective responses to PE ( n = 7). Acetylcholine microiontophoresis (1 μA, 1 s) transiently reduced resting SMC [Ca2+]i by 131 ± 21 nM ( n = 6, P < 0.05) with vasodilation (17 ± 1 μm). Superfusion of sodium nitroprusside (10 μM) transiently reduced SMC [Ca2+]i by 124 ± 18 nM ( n = 6, P < 0.05), whereas dilation (23 ± 5 μm) was sustained. Resolution of arteriolar SMC [Ca2+]i in vivo discriminates key signaling events that govern the local control of tissue blood flow.


1995 ◽  
Vol 269 (6) ◽  
pp. H2031-H2038 ◽  
Author(s):  
J. Xia ◽  
T. L. Little ◽  
B. R. Duling

We have previously shown that conducted vasomotor responses follow patterns that are consistent with a passive spread of electrical current along the length of the arterioles [(Xia and Duling, Am. J. Physiol. 269 (Heart Circ. Physiol. 38): H2022-H2030, 1995]. In this study, we define the cells through which the current flows. Isolated arterioles of hamster cheek pouch were used. The mean resting membrane potential (RMP) for randomly sampled arteriolar cells was -67 mV. When cell types were identified by dye injection, the RMPs were -68 and -67 mV for smooth muscle (SM) and endothelium (EC), respectively. Pulses of KCl induced transient, monophasic depolarizations at the site of stimulation (local), which were conducted decrementally along the length of the arteriole over several millimeters. During electrical conduction, three patterns of responses could be observed, but identical patterns of the conducted electrical responses were always observed in SM and EC. Phenylephrine stimulation also caused transient local and conducted depolarizations in both SM and EC. As with KCl stimuli, shapes of conducted electrical responses were identical in records made in both cell types. The results suggest that SM and EC are electrically coupled both homocellularly and heterocellularly.


1989 ◽  
Vol 256 (3) ◽  
pp. H630-H640 ◽  
Author(s):  
M. J. Davis ◽  
R. W. Gore

Longitudinal response gradients in the microcirculation may in part be explained in terms of the length-tension relationship of vascular smooth muscle at different points along the vascular tree. To test this hypothesis, four branching orders of arterial vessels (20-80 microns ID) were dissected from the hamster cheek pouch and cannulated with concentric micropipettes. Intraluminal pressure was monitored with a servo-null micropipette, and arteriolar dimensions were measured using a videomicrometer. All arterioles developed spontaneous tone in physiological saline solution. Pressure-diameter curves were recorded for maximally activated vessels and for passive vessels. Maximal active wall tension varied nearly threefold, but maximal active medial wall stress (approximately 4 x 10(6) dyn/cm2) varied only approximately 20% between the different vessel orders. These data support the concept that smooth muscle cells from vessels of different sizes are mechanically similar but do not completely explain the longitudinal response gradients reported in the cheek pouch microcirculation. An analysis of the effect of arteriolar wall buckling suggests that the luminal folds that develop at short vessel radii may broaden the peak of the active stress-length curve and extend the pressure range over which arterioles are most sensitive to physical and chemical stimuli.


1992 ◽  
Vol 73 (4) ◽  
pp. 1481-1485 ◽  
Author(s):  
K. Ishida ◽  
P. D. Pare ◽  
J. Hards ◽  
R. R. Schellenberg

The in vitro mechanical properties of smooth muscle strips from 10 human main stem bronchi obtained immediately after pneumonectomy were evaluated. Maximal active isometric and isotonic responses were obtained at varying lengths by use of electrical field stimulation (EFS). At the length (Lmax) producing maximal force (Pmax), resting tension was very high (60.0 +/- 8.8% Pmax). Maximal fractional muscle shortening was 25.0 +/- 9.0% at a length of 75% Lmax, whereas less shortening occurred at Lmax (12.2 +/- 2.7%). The addition of increasing elastic loads produced an exponential decrease in the shortening and velocity of shortening but increased tension generation of muscle strips stimulated by EFS. Morphometric analysis revealed that muscle accounted for 8.7 +/- 1.5% of the total cross-sectional tissue area. Evaluation of two human tracheal smooth muscle preparations revealed mechanics similar to the bronchial preparations. Passive tension at Lmax was 10-fold greater and maximal active shortening was threefold less than that previously demonstrated for porcine trachealis by us of the same apparatus. We attribute the limited shortening of human bronchial and tracheal smooth muscle to the larger load presumably provided by a connective tissue parallel elastic component within the evaluated tissues, which must be overcome for shortening to occur. We suggest that a decrease in airway wall elastance could increase smooth muscle shortening, leading to excessive responses to contractile agonists, as seen in airway hyperresponsiveness.


1990 ◽  
Vol 68 (1) ◽  
pp. 209-219 ◽  
Author(s):  
M. Okazawa ◽  
P. Pare ◽  
J. Road

We applied the technique of sonomicrometry to directly measure length changes of the trachealis muscle in vivo. Pairs of small 1-mm piezoelectric transducers were placed in parallel with the muscle fibers in the posterior tracheal wall in seven anesthetized dogs. Length changes were recorded during mechanical ventilation and during complete pressure-volume curves of the lung. The trachealis muscle showed spontaneous fluctuations in base-line length that disappeared after vagotomy. Before vagotomy passive pressure-length curves showed marked hysteresis and length changed by 18.5 +/- 13.2% (SD) resting length at functional residual capacity (LFRC) from FRC to total lung capacity (TLC) and by 28.2 +/- 16.2% LFRC from FRC to residual volume (RV). After vagotomy hysteresis decreased considerably and length now changed by 10.4 +/- 3.7% LFRC from FRC to TLC and by 32.5 +/- 14.6% LFRC from FRC to RV. Bilateral supramaximal vagal stimulation produced a mean maximal active shortening of 28.8 +/- 14.2% resting length at any lung volume (LR) and shortening decreased at lengths above FRC. The mean maximal velocity of shortening was 4.2 +/- 3.9% LR.S-1. We conclude that sonomicrometry may be used to record smooth muscle length in vivo. Vagal tone strongly influences passive length change. In vivo active shortening and velocity of shortening are less than in vitro, implying that there are significant loads impeding shortening in vivo.


2002 ◽  
Vol 93 (4) ◽  
pp. 1377-1383 ◽  
Author(s):  
Takaya Tsueshita ◽  
Salil Gandhi ◽  
Hayat Önyüksel ◽  
Israel Rubinstein

The purpose of this study was to elucidate the interactions between pituitary adenylate cyclase-activating peptide (PACAP)-(1—38) and phospholipids in vitro and to determine whether these phenomena modulate, in part, the vasorelaxant effects of the peptide in the intact peripheral microcirculation. We found that the critical micellar concentration of PACAP-(1—38) was 0.4–0.9 μM. PACAP-(1—38) significantly increased the surface tension of a dipalmitoylphosphatidylcholine monolayer and underwent conformational transition from predominantly random coil in saline to α-helix in the presence of distearoyl-phosphatidylethanolamine-polyethylene glycol (molecular mass of 2,000 Da) sterically stabilized phospholipid micelles (SSM) ( P < 0.05). Using intravital microscopy, we found that aqueous PACAP-(1—38) evoked significant concentration-dependent vasodilation in the intact hamster cheek pouch that was significantly potentiated when PACAP-(1—38) was associated with SSM ( P < 0.05). The vasorelaxant effects of aqueous PACAP-(1—38) were mediated predominantly by PACAP type 1 (PAC1) receptors, whereas those of PACAP-(1—38) in SSM predominantly by PACAP/vasoactive intestinal peptide type 1 and 2 (VPAC1/VPAC2) receptors. Collectively, these data indicate that PACAP-(1—38) self-associates and interacts avidly with phospholipids in vitro and that these phenomena amplify peptide vasoactivity in the intact peripheral microcirculation.


1993 ◽  
Vol 265 (6) ◽  
pp. L549-L554 ◽  
Author(s):  
R. W. Mitchell ◽  
I. M. Ndukwu ◽  
K. Arbetter ◽  
J. Solway ◽  
A. R. Leff

We studied the effect of either 1) immunogenic inflammation caused by aerosolized ovalbumin or 2) neurogenic inflammation caused by aerosolized capsaicin in vivo on guinea pig tracheal smooth muscle (TSM) contractility in vitro. Force-velocity relationships were determined for nine epithelium-intact TSM strips from ovalbumin-sensitized (OAS) vs. seven sham-sensitized controls and TSM strips for seven animals treated with capsaicin aerosol (Cap-Aer) vs. eight sham controls. Muscle strips were tethered to an electromagnetic lever system, which allowed isotonic shortening when load clamps [from 0 to maximal isometric force (Po)] were applied at specific times after onset of contraction. Contractions were elicited by supramaximal electrical field stimulation (60 Hz, 10-s duration, 18 V). Optimal length for each muscle was determined during equilibration. Maximal shortening velocity (Vmax) was increased in TSM from OAS (1.72 +/- 0.46 mm/s) compared with sham-sensitized animals (0.90 +/- 0.15 mm/s, P < 0.05); Vmax for TSM from Cap-Aer (0.88 +/- 0.11 mm/s) was not different from control TSM (1.13 +/- 0.08 mm/s, P = NS). Similarly, maximal shortening (delta max) was augmented in TSM from OAS (1.01 +/- 0.15 mm) compared with sham-sensitized animals (0.72 +/- 0.14 mm, P < 0.05); delta max for TSM from Cap-Aer animals (0.65 +/- 0.11 mm) was not different from saline aerosol controls (0.71 +/- 0.15 mm, P = NS). We demonstrate Vmax and delta max are augmented in TSM after ovalbumin sensitization; in contrast, neurogenic inflammation caused by capsaicin has no effect on isolated TSM contractility in vitro. These data suggest that airway hyperresponsiveness in vivo that occurs in association with immunogenic or neurogenic inflammation may result from different effects of these types of inflammation on airway smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document