Effect of exercise on FFA metabolism of pancreatectomized dogs

1963 ◽  
Vol 205 (4) ◽  
pp. 645-650 ◽  
Author(s):  
B. Issekutz ◽  
H. I. Miller ◽  
K. Rodahl

Normal and pancreatectomized dogs with indwelling arterial and venous catheters were exercised on the treadmill for 35 min. Palmitate-1-C14 was infused intravenously for 3 hr during the experiment, or administered orally 15 hr before the experiment. The plasma free fatty acid (FFA) level was decreased in normal dogs but increased in the pancreatectomized animals during exercise. This was due to corresponding changes in the rate of FFA release. The rate of uptake of plasma FFA followed the rate of release with some delay, so that at the end of exercise the uptake was tenfold higher in the pancreatectomized dogs than in the controls. In spite of this striking difference, the C14O2 output was increased during exercise four- to fivefold in both groups in the infusion experiments. When the radiopalmitate was administered orally, however, the specific activity of the exhaled C14O2 rapidly decreased in the exercising pancreatectomized dogs but remained rather constant in the controls. It is suggested that during heavy exercise the muscles of the normal dog oxidize their endogenous fat pools, whereas the pancreatectomized animal relies for fat oxidation on the plasma FFA, the concentration of which is considerably increased by norepinephrine in the absence of insulin.

2019 ◽  
Vol 126 (6) ◽  
pp. 1563-1571 ◽  
Author(s):  
Jacob Frandsen ◽  
Stine Dahl Vest ◽  
Christian Ritz ◽  
Steen Larsen ◽  
Flemming Dela ◽  
...  

Plasma free fatty acids (FFA) are a major contributor to whole body fat oxidation during exercise. However, the extent to which manipulating plasma FFA concentrations will influence whole body peak fat oxidation rate (PFO) during exercise remains elusive. In this study we aimed to increase plasma FFA concentrations through a combination of fasting and repeated exercise bouts. We hypothesized that an increase in plasma FFA concentration would increase PFO in a dose-dependent manner. Ten healthy young (31 ± 6 yr) (mean ± SD) well-trained (maximal oxygen uptake 65.9 ± 6.1 ml·min−1·kg−1) men performed four graded exercise tests (GXTs) on 1 day. The GXTs were interspersed by 4 h of bed rest. This was conducted either in a fasted state or with the consumption of a standardized carbohydrate-rich meal 3.5 h before each GXT. Fasting and previous GXTs resulted in a gradual increase in PFO from 0.63 ± 0.18 g/min after an overnight fast (10 h) to 0.93 ± 0.17 g/min after ∼22 h of fasting and three previous GXTs. This increase in PFO coincided with an increase in plasma FFA concentrations ( r2 = 0.73, P < 0.0001). Ingestion of a carbohydrate-rich meal 3.5 h before each GXT resulted in unaltered PFO. This was also reflected in unchanged plasma FFA, glucose, and insulin concentrations. In this study we show that plasma FFA availability is closely tied to whole body PFO and that the length of fasting combined with previous exercise are robust stimuli toward increasing plasma FFA concentration, highlighting the importance for preexercise standardization when conducting GXTs measuring substrate oxidation. NEW & NOTEWORTHY We show that peak fat oxidation is increased in close relationship with plasma free fatty acid availability after combined fasting and repeated incremental exercise tests in healthy highly trained men. Therefore it may be argued that whole body fat oxidation rate measured in most cases after an overnight fast indeed does not represent whole body maximal fat oxidation rate but a whole body peak fat oxidation rate within the context of the preexercise standardization obtained in the study design.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jacob Frandsen ◽  
Axel Illeris Poggi ◽  
Christian Ritz ◽  
Steen Larsen ◽  
Flemming Dela ◽  
...  

Introduction: In men, whole body peak fat oxidation (PFO) determined by a graded exercise test is closely tied to plasma free fatty acid (FFA) availability. Men and women exhibit divergent metabolic responses to fasting and exercise, and it remains unknown how the combined fasting and exercise affect substrate utilization in women. We aimed to investigate this, hypothesizing that increased plasma FFA concentrations in women caused by fasting and repeated exercise will increase PFO during exercise. Then, that PFO would be higher in women compared with men (data from a previous study).Methods: On two separate days, 11 young endurance-trained women were investigated, either after an overnight fast (Fast) or 3.5 h after a standardized meal (Fed). On each day, a validated graded exercise protocol (GXT), used to establish PFO by indirect calorimetry, was performed four times separated by 3.5 h of bed rest both in the fasted (Fast) or fed (Fed) state.Results: Peak fat oxidation increased in the fasted state from 11 ± 3 (after an overnight fast, Fast 1) to 16 ± 3 (mean ± SD) mg/min/kg lean body mass (LBM) (after ~22 h fast, Fast 4), and this was highly associated with plasma FFA concentrations, which increased from 404 ± 203 (Fast 1) to 865 ± 210 μmol/L (Fast 4). No increase in PFO was found during the fed condition with repeated exercise. Compared with trained men from a former identical study, we found no sex differences in relative PFO (mg/min/kg LBM) between men and women, in spite of significant differences in plasma FFA concentrations during exercise after fasting.Conclusion: Peak fat oxidation increased with fasting and repeated exercise in trained women, but the relative PFO was similar in young trained men and women, despite major differences in plasma lipid concentrations during graded exercise.


1964 ◽  
Vol 206 (1) ◽  
pp. 174-178 ◽  
Author(s):  
Bertram Winkler ◽  
Robert Steele ◽  
Norman Altszuler ◽  
Richard C. de Bodo

Bovine growth hormone ( GH) was administered at 1 mg/kg day for various periods of time to normal dogs. The effects produced on plasma free fatty acid ( FFA) metabolism were studied in these animals, in the unanesthetized state, using palmitate-C14. At 3–9 hr following intravenous injection of growth hormone significant increase were observed in plasma FFA concentration, turnover rate, total amount of FFA oxidized to CO2, and per cent of total respiratory CO2 derived from FFA. FFA production was increased by GH; FFA uptake and oxidation increased in parallel with plasma FFA concentration and apparently were not affected directly by GH. Similar changes were observed after 2 days of GH. After 7 days of GH all these parameters returned to control values. The transient effect of GH on FFA metabolism is in contrast with its reported prolonged effects on fat metabolism; possible reasons for this discrepancy are discussed.


1977 ◽  
Vol 232 (1) ◽  
pp. E25 ◽  
Author(s):  
S W Smith ◽  
R H Odell ◽  
D J Marsh ◽  
F E Yates

Free fatty acid (FFA) concentrations were determined in arterial plasma samples obtained during short or prolonged fasts from resting, conscious adult male mongrel dogs. Arterial blood was continuously collected during experiments ranging from 2.25 to 15 h, from dogs fasted 1 or 5 days. Each continuous collection stream was divided at 45 equal intervals into separate sequential samples. In 18 experiments, no consistent pattern was found in plasma FFA concentrations: the concentrations were never constant, and fluctuations were only rarely periodic. Large, spontaneous, seemingly random level changes with amplitudes of 200-600 mueq/liter were observed in 14 experiments, that took from 1 to 8 h to complete. There was no apparent relation between these fluctuations and time of day or rectal temperature, and glucose concentrations remained unchanged during the FFA fluctuations. The inconstancy of plasma FFA levels and the irregularity of their fluctuations suggests that FFA production rates may be unregulated or only loosely regulated within a wide regulation band during the first few days of starvation. No current model of FFA metabolism preducts the observed patterns of FFA levels.


1971 ◽  
Vol 49 (5) ◽  
pp. 394-398 ◽  
Author(s):  
W. D. Wagner ◽  
R. A. Peterson ◽  
R. J. Cenedella

Plasma free fatty acid (FFA) levels and the effects of prostaglandin E1 (PGE1) were studied in cold-acclimated and cold-exposed chickens and compared to controls. Chickens cold-acclimated at 4–7 or 8–11 °C for 4 weeks had significantly elevated plasma FFA when compared to the controls at 19–21 °C. Although PGE1 had no effect on the basal level of FFA of controls, a significantly lower plasma FFA was seen after injection of either 10 or 30 μg PGE1/kg in cold-acclimated chickens. Chickens cold-exposed to 2–3 °C for 4 h demonstrated significant elevations of plasma FFA when compared to controls. Only 30 μg PGE1/kg significantly depressed the plasma FFA in the cold-exposed birds. No inhibition of basal FFA release was seen in control animals. From these experiments, it is concluded that chickens mobilize FFA extensively under cold-exposure and that this stimulated lipolysis is inhibited by PGE1.


1994 ◽  
Vol 77 (2) ◽  
pp. 517-525 ◽  
Author(s):  
L. P. Turcotte ◽  
P. J. Hespel ◽  
T. E. Graham ◽  
E. A. Richter

The extent to which carbohydrate (CHO) availability affects free fatty acid (FFA) metabolism in contracting skeletal muscle is not well characterized. To study this question, rats were depleted of glycogen by swimming exercise and lard feeding 24 h before perfusion of their isolated hindquarters. After 20 min of preperfusion with a medium containing no glucose, palmitate (600 or 2,000 microM), and [1–14C]palmitate, flow was restricted to one hindlimb, which was electrically stimulated for 2 min to further deplete muscles of glycogen. After 2 min of recovery, glucose was added to the perfusate at final concentrations of 0, 6, or 20 mM, and after another 3 min muscles were stimulated for 30 min. At 6 and 2,000 microM palmitate, glucose uptake after 30 min of stimulation averaged 23.5 +/- 9.3 and 45.9 +/- 10.6 mumol.g-1.h-1 with 6 and 20 mM glucose, respectively. At 6 and 2,000 microM palmitate, palmitate uptake was lower (30–37%, P < 0.05) with 0 than with 6 or 20 mM glucose. At 600 microM palmitate, percent palmitate oxidation was higher (27%, P < 0.05) with 0 than with 6 or 20 mM glucose, resulting in similar total palmitate oxidation with the three glucose concentrations (0.28 +/- 0.01 mumol.g-1.h-1). At 2,000 microM palmitate, percent palmitate oxidation was not significantly different among glucose concentrations, resulting in a significantly lower rate of palmitate oxidation with 0 (0.62 +/- 0.18 mumol.g-1.h-1) than with 6 or 20 mM glucose (0.77 +/- 0.25 and 0.78 +/- 0.20 mumol.g-1.h-1, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 259 (5) ◽  
pp. E736-E750 ◽  
Author(s):  
R. C. Bonadonna ◽  
L. C. Groop ◽  
K. Zych ◽  
M. Shank ◽  
R. A. DeFronzo

Methodology for measuring plasma free fatty acid (FFA) turnover/oxidation with [1–14C]palmitate was tested in normal subjects. In study 1, two different approaches (720-min tracer infusion without prime vs. 150-min infusion with NaH14CO3 prime) to achieve steady-state conditions of 14CO2 yielded equivalent rates of plasma FFA turnover/oxidation. In study 2, during staircase NaH14CO3 infusion, calculated rates of 14CO2 appearance agreed closely with NaH14CO3 infusion rates. In study 3, 300-min euglycemic insulin clamp documented that full biological effect of insulin on plasma FFA turnover/oxidation was established within 60–120 min. In study 4, plasma insulin concentration was raised to 14 +/- 2, 23 +/- 2, 38 +/- 2, 72 +/- 5, and 215 +/- 10 microU/ml. A dose-dependent insulin suppression of plasma FFA turnover/oxidation was observed. Plasma FFA concentration correlated positively with plasma FFA turnover/oxidation in basal and insulinized states. Total lipid oxidation (indirect calorimetry) was significantly higher than plasma FFA oxidation in the basal state, suggesting that intracellular lipid stores contributed to whole body lipid oxidation. Hepatic glucose production and total glucose disposal showed the expected dose-dependent suppression and stimulation, respectively, by insulin. In conclusion, insulin regulation of plasma FFA turnover/oxidation is maximally manifest at low physiological plasma insulin concentrations, and in the basal state a significant contribution to whole body lipid oxidation originates from lipid pool(s) that are different from plasma FFA.


2004 ◽  
Vol 287 (1) ◽  
pp. E120-E127 ◽  
Author(s):  
Matthew J. Watt ◽  
Anna G. Holmes ◽  
Gregory R. Steinberg ◽  
Jose L. Mesa ◽  
Bruce E. Kemp ◽  
...  

Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O2 uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased ( P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 ± 0.07; NA, 0.10 ± 0.01 mM). The decreased plasma FFA during NA was associated with decreased ( P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 ± 2.5, NA: 9.1 ± 3.0 nmol·min−1·mg protein−1). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 ± 0.8; NA, 6.3 ± 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 ± 0.07; 180 min: 0.17 ± 0.04 nmol·min−1·mg protein−1). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)α1 activity was not affected by exercise or NA, whereas AMPKα2 activity was increased ( P < 0.05) from rest during exercise in NA and was greater ( P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of plasma FFA, IMTG degradation cannot maintain total fat oxidation. These changes in IMTG degradation appear to disassociate, however, from the activity of the key enzymes responsible for synthesis and degradation of this substrate.


1999 ◽  
Vol 87 (1) ◽  
pp. 285-293 ◽  
Author(s):  
Lorraine P. Turcotte ◽  
Jason R. Swenberger ◽  
Michelle Z. Tucker ◽  
Alice J. Yee

To evaluate the effects of endurance training in rats on fatty acid metabolism, we measured the uptake and oxidation of palmitate in isolated rat hindquarters as well as the content of fatty acid-binding proteins in the plasma membranes (FABPPM) of red and white muscles from 16 trained (T) and 18 untrained (UT) rats. Hindquarters were perfused with 6 mM glucose, 1,800 μM palmitate, and [1-14C]palmitate at rest and during electrical stimulation (ES) for 25 min. FABPPM content was 43–226% higher in red than in white muscles and was increased by 55% in red muscles after training. A positive correlation was found to exist between succinate dehydrogenase activity and FABPPM content in muscle. Palmitate uptake increased by 64–73% from rest to ES in both T and UT and was 48–57% higher in T than UT both at rest (39.8 ± 3.5 vs. 26.9 ± 4.4 nmol ⋅ min−1 ⋅ g−1, T and UT, respectively) and during ES (69.0 ± 6.1 vs. 43.9 ± 4.4 nmol ⋅ min−1 ⋅ g−1, T and UT, respectively). While the rats were resting, palmitate oxidation was not affected by training; palmitate oxidation during ES was higher in T than UT rats (14.8 ± 1.3 vs. 9.3 ± 1.9 nmol ⋅ min−1 ⋅ g−1, T and UT, respectively). In conclusion, endurance training increases 1) plasma free fatty acid (FFA) uptake in resting and contracting perfused muscle, 2) plasma FFA oxidation in contracting perfused muscle, and 3) FABPPM content in red muscles. These results suggest that an increased number of these putative plasma membrane fatty acid transporters may be available in the trained muscle and may be implicated in the regulation of plasma FFA metabolism in skeletal muscle.


1999 ◽  
Vol 86 (6) ◽  
pp. 2097-2105 ◽  
Author(s):  
Anne L. Friedlander ◽  
Gretchen A. Casazza ◽  
Michael A. Horning ◽  
Anton Usaj ◽  
George A. Brooks

We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (V˙o 2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects ( n= 10; age = 25.6 ± 1.0 yr). Two pretraining trials (45 and 65% ofV˙o 2 peak) and two posttraining trials (same absolute workload, 65% of oldV˙o 2 peak; and same relative workload, 65% of newV˙o 2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3,3-2H]glycerol. An additional nine subjects (age 25.4 ± 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increasedV˙o 2 peak by 9.4 ± 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65%V˙o 2 peak(Ra: 8.14 ± 1.28 vs. 6.64 ± 0.46, Rd: 8.03 ± 1.28 vs. 6.42 ± 0.41 mol ⋅ kg−1 ⋅ min−1) ( P ≤ 0.05). After training, when measured at the same absolute and relative intensities, FFA Ra increased to 8.84 ± 1.1, 8.44 ± 1.1 and Rd to 8.82 ± 1.1, 8.35 ± 1.1 mol ⋅ kg−1 ⋅ min−1, respectively ( P ≤ 0.05). Total fat oxidation determined from respiratory exchange ratio was elevated during exercise compared with rest, but did not differ among the four conditions. Glycerol Ra was elevated during exercise compared with rest but did not demonstrate significant intensity or training effects during exercise. Thus, in young men, plasma FFA flux is increased during exercise after endurance training, but total fat oxidation and whole-body lipolysis are unaffected when measured at the same absolute or relative exercise intensities.


Sign in / Sign up

Export Citation Format

Share Document