repeated exercise
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 14)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jacob Frandsen ◽  
Axel Illeris Poggi ◽  
Christian Ritz ◽  
Steen Larsen ◽  
Flemming Dela ◽  
...  

Introduction: In men, whole body peak fat oxidation (PFO) determined by a graded exercise test is closely tied to plasma free fatty acid (FFA) availability. Men and women exhibit divergent metabolic responses to fasting and exercise, and it remains unknown how the combined fasting and exercise affect substrate utilization in women. We aimed to investigate this, hypothesizing that increased plasma FFA concentrations in women caused by fasting and repeated exercise will increase PFO during exercise. Then, that PFO would be higher in women compared with men (data from a previous study).Methods: On two separate days, 11 young endurance-trained women were investigated, either after an overnight fast (Fast) or 3.5 h after a standardized meal (Fed). On each day, a validated graded exercise protocol (GXT), used to establish PFO by indirect calorimetry, was performed four times separated by 3.5 h of bed rest both in the fasted (Fast) or fed (Fed) state.Results: Peak fat oxidation increased in the fasted state from 11 ± 3 (after an overnight fast, Fast 1) to 16 ± 3 (mean ± SD) mg/min/kg lean body mass (LBM) (after ~22 h fast, Fast 4), and this was highly associated with plasma FFA concentrations, which increased from 404 ± 203 (Fast 1) to 865 ± 210 μmol/L (Fast 4). No increase in PFO was found during the fed condition with repeated exercise. Compared with trained men from a former identical study, we found no sex differences in relative PFO (mg/min/kg LBM) between men and women, in spite of significant differences in plasma FFA concentrations during exercise after fasting.Conclusion: Peak fat oxidation increased with fasting and repeated exercise in trained women, but the relative PFO was similar in young trained men and women, despite major differences in plasma lipid concentrations during graded exercise.


Author(s):  
Teran Nieman ◽  
Maximilian Bergelt ◽  
Jessica Clancy ◽  
Kayla Regan ◽  
Nic Hobson ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 192
Author(s):  
Ben Henderson ◽  
Guilherme Lopes Batista ◽  
Carlo G. Bertinetto ◽  
Joris Meurs ◽  
Dušan Materić ◽  
...  

Volatile organic compounds (VOCs) in exhaled breath provide insights into various metabolic processes and can be used to monitor physiological response to exercise and medication. We integrated and validated in situ a sampling and analysis protocol using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for exhaled breath research. The approach was demonstrated on a participant cohort comprising users of the cholesterol-lowering drug statins and non-statin users during a field campaign of three days of prolonged and repeated exercise, with no restrictions on food or drink consumption. The effect of prolonged exercise was reflected in the exhaled breath of participants, and relevant VOCs were identified. Most of the VOCs, such as acetone, showed an increase in concentration after the first day of walking and subsequent decrease towards baseline levels prior to walking on the second day. A cluster of short-chain fatty acids including acetic acid, butanoic acid, and propionic acid were identified in exhaled breath as potential indicators of gut microbiota activity relating to exercise and drug use. We have provided novel information regarding the use of breathomics for non-invasive monitoring of changes in human metabolism and especially for the gut microbiome activity in relation to exercise and the use of medication, such as statins.


2020 ◽  
Vol 36 (6) ◽  
pp. 811-816
Author(s):  
Ying‐ping Huang ◽  
Ali Haris Malik ◽  
Zhi‐ying Tu ◽  
David Johnson ◽  
Wei‐Ming Li ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1990
Author(s):  
Matthew Sharp ◽  
Kazim Sahin ◽  
Matthew Stefan ◽  
Cemal Orhan ◽  
Raad Gheith ◽  
...  

The purpose of this study was to investigate the impact of antioxidant-rich marine phytoplankton supplementation (Oceanix, OCX) on performance and muscle damage following a cross-training event in endurance-trained subjects. Additionally, an animal model was carried out to assess the effects of varying dosages of OCX, with exercise, on intramuscular antioxidant capacity. Methods: In the human trial, endurance-trained subjects (average running distance = 29.5 ± 2.6 miles × week−1) were randomly divided into placebo (PLA) and OCX (25 mg) conditions for 14 days. The subjects were pre-tested on a one-mile uphill run, maximal isometric strength, countermovement jump (CMJ) and squat jump (SJ) power, and for muscle damage (creatine kinase (CK)). On Day 12, the subjects underwent a strenuous cross-training event. Measures were reassessed on Day 13 and 14 (24 h and 48 h Post event). In the animal model, Wistar rats were divided into four groups (n = 7): (i) Control (no exercise and placebo (CON)), (ii) Exercise (E), (iii) Exercise + OCX 1 (Oceanix, 2.55 mg/day, (iv) Exercise + OCX 2 (5.1 mg/day). The rats performed treadmill exercise five days a week for 6 weeks. Intramuscular antioxidant capacity (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px)) and muscle damage (CK and myoglobin (MYOB) were collected. The data were analyzed using repeated measures ANOVA and t-test for select variables. The alpha value was set at p < 0.05. Results: For the human trial, SJ power lowered in PLA relative to OCX at 24 h Post (−15%, p < 0.05). Decrements in isometric strength from Pre to 48 h Post were greater in the PLA group (−12%, p < 0.05) than in the OCX. Serum CK levels were greater in the PLA compared to the OCX (+14%, p < 0.05). For the animal trial, the intramuscular antioxidant capacity was increased in a general dose-dependent manner (E + Oc2 > E + Oc1 > E > CON). Additionally, CK and MYOB were lower in supplemented compared to E alone. Conclusions: Phytoplankton supplementation (Oceanix) sustains performance and lowers muscle damage across repeated exercise bouts. The ingredient appears to operate through an elevating oxidative capacity in skeletal muscle.


2020 ◽  
Vol 52 (7S) ◽  
pp. 710-710
Author(s):  
Ethan V. Bandré ◽  
Courtney D. Jensen ◽  
Cynthia Villalobos ◽  
Staci R. Stevens ◽  
Jared Stevens ◽  
...  

Author(s):  
AN Nithyaa ◽  
S Poonguzhali ◽  
N Vigneshwari

Hemiplegia is a type of paralysis that affects one side of the body due to stroke, characterizing severe weakness or rigid movement. Many people of different age groups are affected by this condition which cannot be completely cured but can be minimized through proper physiotherapy. A continuous and repeated exercise has to be given to the hemiplegic subjects to regain their motor function. To serve this purpose, a three-dimensional model of wheelchair contrived with lower limb exoskeleton is designed and motion analysis is done using SolidWorks. This virtual model of the object is created with the assistance of computer-aided design software. Professionals can be able to do the experiment on what-if scenarios with their three-dimensional designs, which helps to validate their devices and identify any snags with design quality. The pattern of behaviour of lower limb exoskeleton is predicted using SimMechanics in MATLAB.


2019 ◽  
Vol 22 (10) ◽  
pp. 1084-1089 ◽  
Author(s):  
Riana R. Pryor ◽  
J. Luke Pryor ◽  
Lesley W. Vandermark ◽  
Elizabeth L. Adams ◽  
Rachel M. Brodeur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document