Inhibitory effect of ethacrynic acid on chloride permeability

1976 ◽  
Vol 231 (5) ◽  
pp. 1485-1489 ◽  
Author(s):  
R Motais ◽  
JL Cousin

Ethacrynic acid inhibits anion movements in ox red blood cells. The I50 for chloride is 7 X 10(-6) M. The inhibitory effect is instantaneous and completely reversed by washing the cells with a Ringer solution, suggesting that reaction with a membrane SH group is not involved in this process. Direct proof that ethacrynic acid does not act by its reactivity with thiol groups is given by experiments with dihydroethacrynic acid, a derivative that lacks the ability to combine with SH groups: the characteristics of inhibition are strictly identical (instantaneous and reversible; I50 equals 9 X 10(-6) M). All the phenoxyacetic derivatives tested were also more or less inhibitory. The relative activity of all the derivatives was highly correlated with their liposolubility, indicating that hydrophobic interaction is important in determining drug effect and influence of steric factors is minimal. The data suggest that inhibition essentially results from a hydrophobic interaction between ethacrynic acid and apolar regions of the membrane protein allowing chloride transport.

Perception ◽  
10.1068/p3466 ◽  
2003 ◽  
Vol 32 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Jeesun Kim ◽  
Chris Davis

We investigated audio-visual (AV) perceptual integration by examining the effect of seeing the speaker's synchronised moving face on masked-speech detection ability. Signal amplification and higher-level cognitive accounts of an AV advantage were contrasted, the latter by varying whether participants knew the language of the speaker. An AV advantage was shown for sentences whose mid-to-high-frequency acoustic envelope was highly correlated with articulator movement, regardless of knowledge of the language. For low-correlation sentences, knowledge of the language had a large impact; for participants with no knowledge of the language an AV inhibitory effect was found (providing support for reports of a compelling AV illusion). The results indicate a role for both sensory enhancement and higher-level cognitive factors in AV speech detection.


2000 ◽  
pp. 119-123 ◽  
Author(s):  
M Centanni ◽  
G Canettieri ◽  
N Viceconti ◽  
R Sibilla ◽  
A Bei ◽  
...  

OBJECTIVE: We have studied the effect of tryptophan on cellular [(125)I]tri-iodothyronine (T3) uptake by mouse thymocytes. MATERIALS AND METHODS: Mouse thymocytes (20 x 10(6 )cells/ml) were suspended in Krebs-Ringer solution buffered by Tris-HCl and incubation (23 degrees C at pH7.45+/-0.6), in the presence or absence of 1mM tryptophan, was started by adding 25 pM [(125)I]T3. At the end of incubation, samples were cooled in ice, centrifuged over a 30% sucrose cushion and the cell-associated radioactivity was measured in the pellet. RESULTS: Tryptophan reduced both the total and the saturable fraction of [(125)I]T3 uptake by 44% (P=0.0009) and 60% (P=0.0006) respectively, following 1 min of incubation. This effect was specific and dose-dependent, being maximal at 5mM concentration (-82%). In contrast, the pre-exposure of cells to tryptophan for up to 2h had no effect on the subsequent uptake of [(125)I]T3, in the absence of tryptophan. The effect of D-tryptophan on saturable T3 uptake was not different from that obtained using the L-stereoisomer. Tryptophan reduced the V(max) of the initial rate of saturable [(125)I]T3 uptake by two-thirds without affecting the apparent K(m) (2.2 nM) of the process, thus indicating the non-competitive nature of the inhibition. In sodium-free medium the saturable [(125)I]T3 uptake was reduced by 43%. The inhibitory effect of tryptophan on [(125)I]T3 uptake was exerted in both the presence and the absence of sodium. In fact, the inhibitory effect of tryptophan on T3 transport was greater and significantly different (P=0.0046) from that obtained by sodium depletion alone. CONCLUSIONS: Tryptophan interferes with both the sodium-dependent and -independent components of [(125)I]T3 uptake by a dose-dependent, non-competitive mechanism which operates in cis-modality at the plasma membrane level of mouse thymocytes.


1990 ◽  
Vol 259 (6) ◽  
pp. L459-L467 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O3'Grady

Equine tracheal epithelium, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasmalike Ringer solution generates a serosa-positive transepithelial potential of 10–22 mV and a short-circuit current (Isc) of 70–200 microA/cm2. Mucosal amiloride (10 microM) causes a 40–60% decrease in Isc and inhibits the net transepithelial Na flux by 95%. Substitution of Cl with gluconate resulted in a 30% decrease in basal Isc. Bicarbonate substitution with 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid decreased the Isc by 21%. The Cl-dependent Isc was inhibited by serosal addition of 1 mM amiloride. Bicarbonate replacement or serosal amiloride (1 mM) inhibits the net Cl flux by 72 and 69%, respectively. Bicarbonate replacement significantly reduces the effects of serosal amiloride (1 mM) on Isc, indicating its effect is HCO3 dependent. Addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 microM) causes a 40% increase in Isc. This effect is inhibited by subsequent addition of 10 microM serosal bumetanide. Bumetanide (10 microM) reduces net Cl secretion following stimulation with 8-BrcAMP (100 microM). Serosal addition of BaCl2 (1 mM) causes a reduction in Isc equal to that following Cl replacement in the presence or absence of 100 microM cAMP. These results suggest that 1) Na absorption depends on amiloride-inhibitable Na channels in the apical membrane, 2) Cl influx across the basolateral membrane occurs by both a Na-H/Cl-HCO3 parallel exchange mechanism under basal conditions and by a bumetanide-sensitive Na-(K?)-Cl cotransport system under cAMP-stimulated conditions, and 3) basal and cAMP-stimulated Cl secretion depends on Ba-sensitive K channels in the basolateral membrane.


2001 ◽  
Vol 281 (4) ◽  
pp. F679-F686 ◽  
Author(s):  
Craig F. Plato ◽  
Jeffrey L. Garvin

Stimulation of α2-adrenergic receptors inhibits transport in various nephron segments, and the thick ascending limb of the loop of Henle (THAL) expresses α2-receptors. We hypothesized that selective α2-receptor activation decreases NaCl absorption by cortical THALs through activation of NOS and increased production of NO. We found that the α2-receptor agonist clonidine (10 nM) decreased chloride flux ( J Cl) from 119.5 ± 15.9 to 67.4 ± 13.8 pmol · mm−1 · min−1 (43% reduction; P < 0.02), whereas removal of clonidine from the bath increased J Cl by 20%. When NOS activity was inhibited by pretreatment with 5 mM N G-nitro-l-arginine methyl ester, the inhibitory effects of clonidine on THAL J Clwere prevented (81.7 ± 10.8 vs. 71.6 ± 6.9 pmol · mm−1 · min−1). Similarly, when the NOS substrate l-arginine was deleted from the bath, addition of clonidine did not decrease THAL J Cl from control (106.9 ± 11.6 vs. 132.2 ± 21.3 pmol · mm−1 · min−1). When we blocked the α2-receptors with rauwolscine (1 μM), we found that the inhibitory effect of 10 nM clonidine on THAL J Cl was abolished, verifying that α2, rather than I1, receptors mediate the effects of clonidine in the THAL. We investigated the mechanism of NOS activation and found that intracellular calcium concentration did not increase in response to clonidine, whereas pretreatment with 150 nM wortmannin abolished the clonidine-mediated inhibition of THAL J Cl, indicating activation of phosphatidylinositol 3-kinase and the Akt pathway. We found that pretreatment of THALs with 10 μM LY-83583, an inhibitor of soluble guanylate cyclase, blocked clonidine-mediated inhibition of THAL J Cl. In conclusion, α2-receptor stimulation decreases THAL J Cl by increasing NO release and stimulating guanylate cyclase. These data suggest that α2-receptors act as physiological regulators of THAL NO synthesis, thus inhibiting chloride transport and participating in the natriuretic and diuretic effects of clonidine in vivo.


1989 ◽  
Vol 256 (1) ◽  
pp. C168-C174 ◽  
Author(s):  
S. D. Hillyard ◽  
W. Van Driessche

A small, inward-directed, short-circuit current (SCC) was measured across the isolated skin of larval bullfrogs (Rana catesbeiana) when either NaCl or KCl Ringer solution bathed the mucosal surface. The addition of amiloride, in concentrations of 1-100 microM, produced a stepwise increase in SCC. As SCC values became maximally elevated by amiloride, the plateau value (So) of the Lorentzian component in the power-density spectrum increased, whereas the corner frequency (fc) decreased. This agonist effect of amiloride can be explained by an increase in the open probability and possibly the single-channel current of the larval channel. When the amiloride concentration was increased above 100 microM, the SCC values declined progressively but usually remained above pretreatment values. This suggests an antagonist effect of amiloride that is concurrent with the agonist effect. The removal of Ca2+ from the mucosal Ringers increased SCC in conjunction with an increase in So and a decrease in fc. Under these conditions, the maximal agonist effect of amiloride was observed at concentrations of 10-20 microM. Ca2+ thus exerts an inhibitory effect on the larval cation channel that interferes with the agonist effect of amiloride. The addition of Ba2+ to Ca2+-free preparations lowered SCC and reduced the agonist effect of amiloride.


2000 ◽  
Vol 279 (2) ◽  
pp. F326-F333 ◽  
Author(s):  
Craig F. Plato ◽  
David M. Pollock ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) inhibits transport in various nephron segments, and the thick ascending limb of the loop of Henle (TALH) expresses ET-1 receptors. In many tissues, activation of ETB receptors stimulates release of NO, and we recently reported that endogenous NO inhibits TALH chloride flux ( J Cl). However, the relationship between ET-1 and NO in the control of nephron transport has not been extensively studied. We hypothesized that ET-1 decreases NaCl transport by cortical TALHs through activation of ETBreceptors and release of NO. Exogenous ET-1 (1 nM) decreased J Cl from 118.3 ± 15.0 to 62.7 ± 13.6 pmol · mm−1 · min−1 (48.3 ± 8.2% reduction), whereas removal of ET-1 increased J Cl in a separate group of tubules from 87.6 ± 10.7 to 115.2 ± 10.3 pmol · mm−1 · min−1 (34.5 ± 6.2% increase). To determine whether NO mediates the inhibitory effects of ET-1 on J Cl, we examined the effect of inhibiting of NO synthase (NOS) with N G-nitro-l-arginine methyl ester (l-NAME) on ET-1-induced changes in J Cl. l-NAME (5 mM) completely prevented the ET-1-induced reduction in J Cl, whereas d-NAME did not. l-NAME alone had no effect on J Cl. These data suggest that the effects of ET-1 are mediated by NO. Blockade of ETBreceptors with BQ-788 prevented the inhibitory effects of 1 nM ET-1. Activation of ETB receptors with sarafotoxin S6c mimicked the inhibitory effect of ET-1 on J Cl (from 120.7 ± 12.6 to 75.4 ± 13.3 pmol · mm−1 · min−1). In contrast, ETA receptor antagonism with BQ-610 did not prevent ET-1-mediated inhibition of TALH J Cl (from 96.5 ± 10.4 to 69.5 ± 8.6 pmol · mm−1 · min−1). Endothelin increased intracellular calcium from 96.9 ± 14.0 to 191.4 ± 11.9 nM, an increase of 110.8 ± 26.1%. We conclude that exogenous endothelin indirectly decreases TALH J Cl by activating ETB receptors, increasing intracellular calcium concentration, and stimulating NO release. These data suggest that endothelin acts as a physiological regulator of TALH NO synthesis, thus inhibiting chloride transport and contributing to the natriuretic effects of ET-1 observed in vivo.


1990 ◽  
Vol 259 (4) ◽  
pp. F539-F544 ◽  
Author(s):  
C. S. Park ◽  
P. S. Doh ◽  
R. E. Carraway ◽  
G. G. Chung ◽  
J. C. Fray ◽  
...  

This study investigated the cellular mechanism of stimulation of renin secretion by the loop diuretic ethacrynic acid (EA) in rabbit renal cortical slices. The diuretic rapidly stimulated renin secretion reversibly and in a concentration-dependent manner. The stimulation was independent of the presence of Na+, Cl-, Ca2+, or other loop diuretics (furosemide and bumetanide) in the incubation media, suggesting that the stimulation in vitro was not dependent on the inhibitory effect of the diuretic on Na(+)-K(+)-2Cl-cotransport. The findings do not support the macula densa hypothesis. The stimulation by the diuretic was prevented and reversed by thiols such as cysteine and dithiothreitol, which also prevented and reversed the stimulation of renin secretion by the nondiuretic sulfhydryl reagent P-chloromercuriphenyl-sulfonate (PCMPS). These results suggest that EA stimulates renin secretion in vitro via reversible chemical reactions with specific membrane sulfhydryl groups that may have no functional role in the Na(+)-K(+)-2Cl- cotransport.


1977 ◽  
Vol 233 (2) ◽  
pp. F94-F101
Author(s):  
O. A. Candia ◽  
R. Montoreano ◽  
S. M. Podos

The ionophore A23187 at a concentration of 10(-7) to 10(-5) M stimulated active transport of Cl across the isolated frog cornea. The ionophore had no effect in a Cl-free medium. Both unidirectional Cl fluxes were increased by A23187. The electrical resistance was decreased, and this can be totally accounted for by the increment in passive Cl fluxes. The effect of A23187 on Cl transport and permeability mimicked the effects of cyclic AMP, isoproterenol, and epinephrine. A23187 had no effect when the corneas were fully stimulated by epinephrine or isoproterenol. A23187 produced normal stimulation of the SCC in corneas pretreated with alpha- and beta-adrenergic blockers. The stimulation of the SCC by A23187 was dependent on the presence of Ca in the Ringer solution. Excess Ca (10 mM) resulted in a reduced response. Increasing the Mg concentration in the medium reduced the stimulation of the SCC with Ca concentrations of 0.1-5 mM, but prevented the relative inhibition of 10 mM Ca. Intracellular Ca concentration seemed to regulate Cl permeability of the cornea.


1979 ◽  
Vol 46 (2) ◽  
pp. 211-216 ◽  
Author(s):  
C. Ody ◽  
Y. Dieterle ◽  
I. Wand ◽  
H. Stalder ◽  
A. F. Junod

To determine the cellular site for uptake and degradation of circulating prostaglandins (PGs) by the lung, the metabolism of PGA1 and PGF2 alpha was studied in pig lung slices, smooth muscle preparations, and pulmonary valves, as well as in isolated and cultured endothelial cells and cultured fibroblasts. Formation of 15-keto metabolites of both PGA1 and PGF2 alpha by lung slices was confirmed. No evidence of PGF2 alpha degradation could be found in any of the remaining preparations. For PGA1, however, 15-hydroxyprostaglandin dehydrogenase activity was detected in the three smooth muscle preparations studied (trachea, aorta, pulmonary artery) and found to be similar to that measured in lung slices. But the inhibitory effect of diphloretin phosphate and bromcresol green was much more marked in smooth muscle tissues than in lung slices, which suggested that PGA1 metabolism by the lung was not due to smooth muscle cells. Endothelial cells, freshly isolated and cultured, originating from the pulmonary artery and from the aorta, formed a PGA1-glutathione adduct, poorly extractable in ethyl acetate. This reaction, also present in cultured fibroblasts, was inhibited by ethacrynic acid. The cellular site responsible for the pulmonary degradation of circulating PGs remains undetermined.


2018 ◽  
Vol 61 (6) ◽  
pp. 357-360
Author(s):  
Yoshiki Ueno ◽  
Daisuke Taneda ◽  
Shohei Okino ◽  
Yoshihito Shirai

Sign in / Sign up

Export Citation Format

Share Document