Modulation of airway inflammation and bacterial clearance by epithelial cell ICAM-1

2004 ◽  
Vol 287 (3) ◽  
pp. L598-L607 ◽  
Author(s):  
Alicia L. Humlicek ◽  
Liyi Pang ◽  
Dwight C. Look

Many cell types in the airway express the adhesive glycoprotein for leukocytes intercellular adhesion molecule-1 (ICAM-1) constitutively and/or in response to inflammatory stimuli. In this study, we identified functions of ICAM-1 on airway epithelial cells in defense against infection with Haemophilus influenzae. Initial experiments using a mouse model of airway infection in which the bacterial inoculum was mixed with agar beads that localize inflammation in airways demonstrated that ICAM-1 expression was required for efficient clearance of H. influenzae. Airway epithelial cell ICAM-1 expression required few or no leukocytes, suggesting that epithelial cells could be activated directly by interaction with bacteria. Specific inhibition of ICAM-1 function on epithelial cells by orotracheal injection of blocking antibodies resulted in decreased leukocyte recruitment and H. influenzae clearance in the airway. Inhibition of endothelial cell ICAM-1 resulted in a similar decrease in leukocyte recruitment but did not affect bacterial clearance, indicating that epithelial cell ICAM-1 had an additional contribution to airway defense independent of effects on leukocyte migration. To assess this possibility, we used an in vitro model of neutrophil phagocytosis of bacteria and observed significantly greater engulfment of bacteria by neutrophils adherent to epithelial cells expressing ICAM-1 compared with nonadherent neutrophils. Furthermore, bacterial phagocytosis and killing by neutrophils after interaction with epithelial cells were decreased when a blocking antibody inhibited ICAM-1 function. The results indicate that epithelial cell ICAM-1 participates in neutrophil recruitment into the airway, but its most important role in clearance of H. influenzae may be assistance with neutrophil-dependent bacterial killing.

2004 ◽  
Vol 96 (5) ◽  
pp. 1738-1744 ◽  
Author(s):  
T. Mathisen ◽  
S. G. Von Essen ◽  
T. A. Wyatt ◽  
D. J. Romberger

The dust of hog confinement facilities induces airway inflammation. Mechanisms by which this dust modulates inflammation are not completely defined, although it is clear that exposure to dust can modulate both epithelial cell and inflammatory cell function. In this work, we demonstrate that airway epithelial cell (BEAS-2B) treatment with hog barn dust extract (HDE) results in augmentation of peripheral blood lymphocyte adhesion to epithelial cell cultures in vitro. The augmentation of lymphocyte adhesion to epithelial cells is dependent on the concentration of HDE and time of HDE exposure, with twofold increases observed by 3 h and maintained at 24 h. Similar results are seen with primary human bronchial epithelial cells in culture. Lymphocyte adhesion to epithelial cells is inhibited in a concentration-dependent fashion by the treatment of epithelial cells with antibody to intercellular adhesion molecule-1 (ICAM-1). In addition, HDE exposure of epithelial cells results in an approximate twofold increase in ICAM-1 expression as determined by flow cytometry analysis. Pretreatment of epithelial cells with a protein kinase C-α (PKC-α) inhibitor, Gö-6976, also inhibited subsequent lymphocyte adhesion to HDE-exposed epithelial cells. These data suggest that airway epithelial cell HDE exposure enhances subsequent lymphocyte adhesion to epithelial cells that is mediated in part by HDE modulation of ICAM-1 expression and PKC-α.


2001 ◽  
Vol 193 (3) ◽  
pp. 339-352 ◽  
Author(s):  
Michael J. Walter ◽  
Naohiro Kajiwara ◽  
Peter Karanja ◽  
Mario Castro ◽  
Michael J. Holtzman

Human airway epithelial cells appear specially programmed for expression of immune response genes implicated in immunity and inflammation. To better determine how this epithelial system operates in vivo, we analyzed its behavior in mouse models that allow for in vitro versus in vivo comparison and genetic modification. Initial comparisons indicated that tumor necrosis factor α induction of epithelial intercellular adhesion molecule 1 required sequential induction of interleukin (IL)-12 (p70) and interferon γ, and unexpectedly localized IL-12 production to airway epithelial cells. Epithelial IL-12 was also inducible during paramyxoviral bronchitis, but in this case, initial IL-12 p70 expression was followed by 75-fold greater expression of IL-12 p40 (as monomer and homodimer). Induction of IL-12 p40 was even further increased in IL-12 p35-deficient mice, and in this case, was associated with increased mortality and epithelial macrophage accumulation. The results placed epithelial cell overgeneration of IL-12 p40 as a key intermediate for virus-inducible inflammation and a candidate for epithelial immune response genes that are abnormally programmed in inflammatory disease. This possibility was further supported when we observed IL-12 p40 overexpression selectively in airway epithelial cells in subjects with asthma and concomitant increases in airway levels of IL-12 p40 (as homodimer) and airway macrophages. Taken together, these results suggest a novel role for epithelial-derived IL-12 p40 in modifying the level of airway inflammation during mucosal defense and disease.


2012 ◽  
Vol 302 (10) ◽  
pp. L1057-L1066 ◽  
Author(s):  
Sreekumar Othumpangat ◽  
Michael Regier ◽  
Giovanni Piedimonte

Human rhinoviruses (HRV) are the most common agent of upper respiratory infections and an important cause of lower respiratory tract symptoms. Our previous research with other viral pathogens has shown that virus-induced airway inflammation and hyperreactivity involve neurotrophic pathways that also affect tropism and severity of the infection. The goals of this study were to analyze systematically the expression of key neurotrophic factors and receptors during HRV-16 infection of human airway epithelial cells and to test the hypothesis that neurotrophins modulate HRV infection by controlling the expression of a major cellular receptor for this virus, the intercellular adhesion molecule 1 (ICAM-1). Neurotrophins and ICAM-1 expression were analyzed at the mRNA level by real-time PCR and at the protein level by flow cytometry and immunocytochemistry. A small inhibitory RNA (siRNA) or a specific blocking antibody was utilized to suppress nerve growth factor (NGF) expression and measure its effects on viral replication and virus-induced cell death. Nasal and bronchial epithelial cells were most susceptible to HRV-16 infection at 33°C and 37°C, respectively, and a significant positive relationship was noted between expression of NGF and tropomyosin-related kinase A (TrkA) and virus copy number. ICAM-1 expression was dose dependently upregulated by exogenous NGF and significantly downregulated by NGF inhibition with corresponding decrease in HRV-16 replication. NGF inhibition also increased apoptotic death of infected cells. Our results suggest that HRV upregulates the NGF-TrkA pathway in airway epithelial cells, which in turn amplifies viral replication by increasing HRV entry via ICAM-1 receptors and by limiting apoptosis.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Ang Su ◽  
Jie Tong ◽  
Yuguang Fu ◽  
Sandy Müller ◽  
Yenehiwot Berhanu Weldearegay ◽  
...  

AbstractPasteurella (P.) multocida is a zoonotic pathogen, which is able to cause respiratory disorder in different hosts. In cattle, P. multocida is an important microorganism involved in the bovine respiratory disease complex (BRDC) with a huge economic impact. We applied air–liquid interface (ALI) cultures of well-differentiated bovine airway epithelial cells to analyze the interaction of P. multocida with its host target cells. The bacterial pathogen grew readily on the ALI cultures. Infection resulted in a substantial loss of ciliated cells. Nevertheless, the epithelial cell layer maintained its barrier function as indicated by the transepithelial electrical resistance and the inability of dextran to get from the apical to the basolateral compartment via the paracellular route. Analysis by confocal immunofluorescence microscopy confirmed the intactness of the epithelial cell layer though it was not as thick as the uninfected control cells. Finally, we chose the bacterial neuraminidase to show that our infection model is a sustainable tool to analyze virulence factors of P. multocida. Furthermore, we provide an explanation, why this microorganism usually is a commensal and becomes pathogenic only in combination with other factors such as co-infecting microorganisms.


1999 ◽  
Vol 277 (1) ◽  
pp. L58-L64 ◽  
Author(s):  
Ilja Striz ◽  
Tadashi Mio ◽  
Yuichi Adachi ◽  
Peggy Heires ◽  
Richard A. Robbins ◽  
...  

Interleukin (IL)-4 is thought to contribute to the Th2 type of immune response and hence the development of allergic reactions such as asthma. In asthmatic patients, the airway epithelium expresses increased amounts of the cell surface adhesion molecule intercellular adhesion molecule (ICAM)-1 (CD54). One cytokine capable of inducing ICAM-1 in airway epithelial cells, tumor necrosis factor-α (TNF-α), is present in asthma. This study evaluated if IL-4 either alone or together with TNF-α costimulation might modulate CD54 expression by human bronchial epithelial cells (HBECs). CD54 positivity increased in response to IL-4 (16 ± 2% positive vs. 3 ± 1%, P < 0.01); greater induction of CD54 resulted from TNF-α (45 ± 2%, P < 0.001). Costimulation with TNF-α plus IL-4 further augmented expression (56 ± 1%, P < 0.05). Immunoperoxidase results were confirmed by flow cytometry. RT-PCR revealed no increase in ICAM-1 mRNA expression under control conditions or after stimulation with IL-4 alone. TNF-α increased IL-4 mRNA, and IL-4 potentiated this. Functionally, IL-4 augmented the adhesion of THP-1 monocyte/macrophage cells to monolayers of HBECs both alone and in the presence of TNF-α. We conclude that 1) IL-4 augments epithelial cell ICAM-1 expression, 2) IL-4 potentiates the adhesion of THP-1 monocyte/macrophage cells to epithelial cells, and 3) modulation of epithelial cell ICAM-1 expression by IL-4 may play a role in the immunopathology of bronchial asthma.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joao Gimenes-Junior ◽  
Nicole Owuar ◽  
Hymavathi Reddy Vari ◽  
Wuyan Li ◽  
Nathaniel Xander ◽  
...  

AbstractForkhead transcription factor class O (FOXO)3a, which plays a critical role in a wide variety of cellular processes, was also found to regulate cell-type-specific antiviral responses. Airway epithelial cells express FOXO3a and play an important role in clearing rhinovirus (RV) by mounting antiviral type I and type III interferon (IFN) responses. To elucidate the role of FOXO3a in regulating antiviral responses, we generated airway epithelial cell-specific Foxo3a knockout (Scga1b1-Foxo3a−/−) mice and a stable FOXO3a knockout human airway epithelial cell line. Compared to wild-type, Scga1b1-Foxo3a−/− mice show reduced IFN-α, IFN-β, IFN-λ2/3 in response to challenge with RV or double-stranded (ds)RNA mimic, Poly Inosinic-polycytidylic acid (Poly I:C) indicating defective dsRNA receptor signaling. RV-infected Scga1b1-Foxo3a−/− mice also show viral persistence, enhanced lung inflammation and elevated pro-inflammatory cytokine levels. FOXO3a K/O airway epithelial cells show attenuated IFN responses to RV infection and this was associated with conformational change in mitochondrial antiviral signaling protein (MAVS) but not with a reduction in the expression of dsRNA receptors under unstimulated conditions. Pretreatment with MitoTEMPO, a mitochondrial-specific antioxidant corrects MAVS conformation and restores antiviral IFN responses to subsequent RV infection in FOXO3a K/O cells. Inhibition of oxidative stress also reduces pro-inflammatory cytokine responses to RV in FOXO3a K/O cells. Together, our results indicate that FOXO3a plays a critical role in regulating antiviral responses as well as limiting pro-inflammatory cytokine expression. Based on these results, we conclude that FOXO3a contributes to optimal viral clearance and prevents excessive lung inflammation following RV infection.


Sign in / Sign up

Export Citation Format

Share Document