Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase

2004 ◽  
Vol 287 (4) ◽  
pp. L656-L664 ◽  
Author(s):  
Karen A. Fagan ◽  
Masahiko Oka ◽  
Natalie R. Bauer ◽  
Sarah A. Gebb ◽  
D. Dunbar Ivy ◽  
...  

RhoA GTPase mediates a variety of cellular responses, including activation of the contractile apparatus, growth, and gene expression. Acute hypoxia activates RhoA and, in turn, its downstream effector, Rho-kinase, and previous studies in rats have suggested a role for Rho/Rho-kinase signaling in both acute and chronically hypoxic pulmonary vasoconstriction. We therefore hypothesized that activation of Rho/Rho-kinase in the pulmonary circulation of mice contributes to acute hypoxic pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension and vascular remodeling. In isolated, salt solution-perfused mouse lungs, acute administration of the Rho-kinase inhibitor Y-27632 (1 × 10−5 M) attenuated hypoxic vasoconstriction as well as that due to angiotensin II and KCl. Chronic treatment with Y-27632 (30 mg·kg−1·day−1) via subcutaneous osmotic pump decreased right ventricular systolic pressure, right ventricular hypertrophy, and neomuscularization of the distal pulmonary vasculature in mice exposed to hypobaric hypoxia for 14 days. Analysis of a small number of proximal pulmonary arteries suggested that Y-27632 treatment reduced the level of phospho-CPI-17, a Rho-kinase target, in hypoxic lungs. We also found that endothelial nitric oxide synthase protein in hypoxic lungs was augmented by Y-27632, suggesting that enhanced nitric oxide production might have played a role in the Y-27632-induced attenuation of chronically hypoxic pulmonary hypertension. In conclusion, Rho/Rho-kinase activation is important in the effects of both acute and chronic hypoxia on the pulmonary circulation of mice, possibly by contributing to both vasoconstriction and vascular remodeling.

2005 ◽  
Vol 289 (6) ◽  
pp. L1083-L1093 ◽  
Author(s):  
C. M. Littler ◽  
C. A. Wehling ◽  
M. J. Wick ◽  
K. A. Fagan ◽  
C. D. Cool ◽  
...  

Loss of PKC-ε limits the magnitude of acute hypoxic pulmonary vasoconstriction (HPV) in the mouse. Therefore, we hypothesized that loss of PKC-ε would decrease the contractile and/or structural response of the murine pulmonary circulation to chronic hypoxia (Hx). However, the pattern of lung vascular responses to chronic Hx may or may not be predicted by the acute HPV response. Adult PKC-ε wild-type (PKC-ε+/+), heterozygous null, and homozygous null (PKC-ε−/−) mice were exposed to normoxia or Hx for 5 wk. PKC-ε−/− mice actually had a greater increase in right ventricular (RV) systolic pressure, RV mass, and hematocrit in response to chronic Hx than PKC-ε+/+ mice. In contrast to the augmented PA pressure and RV hypertrophy, pulmonary vascular remodeling was increased less than expected (i.e., equal to PKC-ε+/+ mice) in both the proximal and distal PKC-ε−/− pulmonary vasculature. The contribution of increased vascular tone to this pulmonary hypertension (PHTN) was assessed by measuring the acute vasodilator response to nitric oxide (NO). Acute inhalation of NO reversed the increased PA pressure in hypoxic PKC-ε−/− mice, implying that the exaggerated PHTN may be due to a relative deficiency in nitric oxide synthase (NOS). Despite the higher PA pressure, chronic Hx stimulated less of an increase in lung endothelial (e) and inducible (i) NOS expression in PKC-ε−/− than PKC-ε+/+ mice. In contrast, expression of nNOS in PKC-ε+/+ mice decreased in response to chronic Hx, while lung levels in PKC-ε−/− mice remained unchanged. In summary, loss of PKC-ε results in increased vascular tone, but not pulmonary vascular remodeling in response to chronic Hx. Blunting of Hx-induced eNOS and iNOS expression may contribute to the increased vascular tone. PKC-ε appears to be an important signaling intermediate in the hypoxic regulation of each NOS isoform.


2012 ◽  
Vol 302 (12) ◽  
pp. H2599-H2611 ◽  
Author(s):  
Gary Peng ◽  
Julijana Ivanovska ◽  
Crystal Kantores ◽  
Todd Van Vliet ◽  
Doreen Engelberts ◽  
...  

Sustained therapeutic hypercapnia prevents pulmonary hypertension in experimental animals, but its rescue effects on established disease have not been studied. Therapies that inhibit Rho-kinase (ROCK) and/or augment nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling can reverse or prevent progression of chronic pulmonary hypertension. Our objective in the present study was to determine whether sustained rescue treatment with inhaled CO2 (therapeutic hypercapnia) would improve structural and functional changes of chronic hypoxic pulmonary hypertension. Spontaneously breathing pups were exposed to normoxia (21% O2) or hypoxia (13% O2) from postnatal days 1–21 with or without 7% CO2 (PaCO2 elevated by ∼25 mmHg) or 10% CO2 (PaCO2 elevated by ∼40 mmHg) from days 14 to 21. Compared with hypoxia alone, animals exposed to hypoxia and 10% CO2 had significantly ( P < 0.05) decreased pulmonary vascular resistance, right-ventricular systolic pressure, right-ventricular hypertrophy, and medial wall thickness of pulmonary resistance arteries as well as decreased lung phosphodiesterase (PDE) V, RhoA, and ROCK activity. Rescue treatment with 10% CO2, or treatment with a ROCK inhibitor (15 mg/kg ip Y-27632 twice daily from days 14 to 21), also increased pulmonary arterial endothelial nitric oxide synthase and lung NO content. In contrast, cGMP content and cGMP-dependent protein kinase (PKG) activity were increased by exposure to 10% CO2, but not by ROCK inhibition with Y-27632. In vitro exposure of pulmonary artery smooth muscle cells to hypercapnia suppressed serum-induced ROCK activity, which was prevented by inhibition of PKG with Rp-8-Br-PET-cGMPS. We conclude that sustained hypercapnia dose-dependently inhibited ROCK activity, augmented NO-cGMP-PKG signaling, and led to partial improvements in the hemodynamic and structural abnormalities of chronic hypoxic PHT in juvenile rats. Increased PKG content and activity appears to play a major upstream role in CO2-induced suppression of ROCK activity in pulmonary arterial smooth muscle.


1996 ◽  
Vol 8 (3) ◽  
pp. 431 ◽  
Author(s):  
V DeMarco ◽  
JW Skimming ◽  
TM Ellis ◽  
S Cassin

Others have shown that inhaled nitric oxide causes reversal of pulmonary hypertension in anaesthetized perinatal sheep. The present study examined haemodynamic responses to inhaled NO in the normal and constricted pulmonary circulation of unanaesthetized newborn lambs. Three experiments were conducted on each of 7 lambs. First, to determine a minimum concentration of NO which could reverse acute pulmonary hypertension caused by infusion of the thromboxame mimic U46619, the haemodynamic effects of 5 different doses of inhaled NO were examined. Second, the effects of inhaling 80 ppm NO during hypoxic pulmonary vasoconstriction were examined. Finally, to determine if tachyphalaxis occurs during NO inhalation, lambs were exposed to 80 ppm NO for 3 h during which time pulmonary arterial pressure was doubled by infusion of U46619. Breathing NO (80 ppm) caused a slight but significant decrease in pulmonary vascular resistance (PVR) in lambs with normal pulmonary arterial pressure (PAP). Nitric oxide, inhaled at concentrations between 10 and 80 ppm for 6 min (F1O2 = 0.60), caused decreases in PVR when PAP was elevated with U46619. Nitric oxide acted selectively on the pulmonary circulation, i.e. no changes occurred in systemic arterial pressure or any other measured variable. Breathing 80 ppm NO for 6 min reversed hypoxic pulmonary vasoconstriction. In the chronic exposure study, inhaling 80 ppm NO for 3 h completely reversed U46619-induced pulmonary hypertension. Although arterial methaemoglobin increased during the 3-h exposure to 80 ppm NO, there was no indication that this concentration of NO impairs oxygen loading. These data demonstrate that NO, at concentrations as low as 10 ppm, is a potent, rapid-action, and selective pulmonary vasodilator in unanaesthetized newborn lambs with elevated pulmonary tone. Furthermore, these data support the use of inhaled NO for treatment of infants with pulmonary hypertension.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Dustin R Fraidenburg ◽  
Haiyang Tang ◽  
Abigail Drennan ◽  
Jason X Yuan

Background: Vasoactive intestinal peptide (VIP) is an endogenous hormone that is known to relax vascular smooth muscle and has established anti-proliferative and immunomodulatory effects in the pulmonary circulation making it an attractive therapeutic target in pulmonary arterial hypertension (PAH). In the current study, a polymer-based nanocarrier (protected graft copolymer - PGC) formulation of VIP, which has been shown to increase the potency and duration of action of VIP, is used to show both acute vasodilatory effects and chronic therapeutic effects in experimental animal models of pulmonary hypertension. Methods: The isolated perfused mouse lung preparation is utilized to test acute hypoxic pulmonary vasoconstriction (HPV) in mice. Two animal models of pulmonary hypertension are used in preventative experiments, chronic hypoxic pulmonary hypertension in mice and monocrotaline-induced pulmonary hypertension in rats. Right ventricular systolic pressure and Fulton’s index (weight ratio of RV/[LV+Septum]) are used for measures of pulmonary hemodynamics and RV hypertrophy respectively. Results: PGC-VIP decreased resting pulmonary artery pressure and attenuated acute HPV elicited by 1% inhaled oxygen tension in a dose dependent manner from 0.1 μM to 1.0 μM. After four weeks of chronic hypoxia, both RVSP measurements and Fulton’s index were significantly decreased in mice receiving 100 mg/kg intraperitoneal PGC-VIP every other day compared to vehicle control. Higher doses were associated with mortality in the treatment group. MCT-PH rats receiving subcutaneous PGC-VIP at a dose of 250 mg/kg failed to show improvement in RVSP or Fulton’s index compared to vehicle control. Conclusion: This novel formulation of VIP demonstrates both acute and chronic vasodilatory effects in the pulmonary circulation. Treatment with PGC-VIP can attenuate the development of hypoxic pulmonary hypertension, yet significant mortality is seen at higher doses. Subcutaneous injection failed to attenuate the development of experimental PH in rats, possibly due to an ineffective dose or route of administration. Further studies are underway to identify the ideal dosing strategy necessary to attenuate and potentially reverse experimental PH in animal models.


2014 ◽  
Vol 116 (7) ◽  
pp. 867-874 ◽  
Author(s):  
Larissa A. Shimoda ◽  
Steven S. Laurie

In the lung, acute reductions in oxygen lead to hypoxic pulmonary vasoconstriction, whereas prolonged exposures to hypoxia result in sustained vasoconstriction, pulmonary vascular remodeling, and the development of pulmonary hypertension. Data from both human subjects and animal models implicate a role for hypoxia-inducible factors (HIFs), oxygen-sensitive transcription factors, in pulmonary vascular responses to both acute and chronic hypoxia. In this review, we discuss work from our laboratory and others supporting a role for HIF in modulating hypoxic pulmonary vasoconstriction and mediating hypoxia-induced pulmonary hypertension, identify some of the downstream targets of HIF, and assess the potential to pharmacologically target the HIF system.


Endocrinology ◽  
2007 ◽  
Vol 149 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Daryl O. Schwenke ◽  
Takeshi Tokudome ◽  
Mikiyasu Shirai ◽  
Hiroshi Hosoda ◽  
Takeshi Horio ◽  
...  

Chronic exposure to hypoxia, a common adverse consequence of most pulmonary disorders, can lead to a sustained increase in pulmonary arterial pressure (PAP), right ventricular hypertrophy, and is, therefore, closely associated with heart failure and increased mortality. Ghrelin, originally identified as an endogenous GH secretagogue, has recently been shown to possess potent vasodilator properties, likely involving modulation of the vascular endothelium and its associated vasoactive peptides. In this study we hypothesized that ghrelin would impede the pathogenesis of pulmonary arterial hypertension during chronic hypoxia (CH). PAP was continuously measured using radiotelemetry, in conscious male Sprague Dawley rats, in normoxia and during 2-wk CH (10% O2). During this hypoxic period, rats received a daily sc injection of either saline or ghrelin (150 μg/kg). Subsequently, heart and lung samples were collected for morphological, histological, and molecular analyses. CH significantly elevated PAP in saline-treated rats, increased wall thickness of peripheral pulmonary arteries, and, consequently, induced right ventricular hypertrophy. In these rats, CH also led to the overexpression of endothelial nitric oxide synthase mRNA and protein, as well as endothelin-1 mRNA within the lung. Exogenous ghrelin administration attenuated the CH-induced overexpression of endothelial nitric oxide synthase mRNA and protein, as well as endothelin-1 mRNA. Consequently, ghrelin significantly attenuated the development of pulmonary arterial hypertension, pulmonary vascular remodeling, and right ventricular hypertrophy. These results demonstrate the therapeutic benefits of ghrelin for impeding the pathogenesis of pulmonary hypertension and right ventricular hypertrophy, particularly in subjects prone to CH (e.g. pulmonary disorders).


2012 ◽  
Vol 113 (9) ◽  
pp. 1343-1352 ◽  
Author(s):  
Larissa A. Shimoda

When exposed to chronic hypoxia (CH), the pulmonary circulation responds with enhanced contraction and vascular remodeling, resulting in elevated pulmonary arterial pressures. Our work has identified CH-induced alterations in the expression and activity of several ion channels and transporters in pulmonary vascular smooth muscle that contribute to the development of hypoxic pulmonary hypertension and uncovered a critical role for the transcription factor hypoxia-inducible factor-1 (HIF-1) in mediating these responses. Current work is focused on the regulation of HIF in the chronically hypoxic lung and evaluation of the potential for pharmacological inhibitors of HIF to prevent, reverse, or slow the progression of pulmonary hypertension.


2014 ◽  
Vol 306 (1) ◽  
pp. H41-H52 ◽  
Author(s):  
Carlos H. Nitta ◽  
David A. Osmond ◽  
Lindsay M. Herbert ◽  
Britta F. Beasley ◽  
Thomas C. Resta ◽  
...  

Chronic hypoxia (CH) associated with respiratory disease results in elevated pulmonary vascular intracellular Ca2+ concentration, which elicits enhanced vasoconstriction and promotes vascular arterial remodeling and thus has important implications in the development of pulmonary hypertension (PH). Store-operated Ca2+ entry (SOCE) contributes to this elevated intracellular Ca2+ concentration and has also been linked to acute hypoxic pulmonary vasoconstriction (HPV). Since our laboratory has recently demonstrated an important role for acid-sensing ion channel 1 (ASIC1) in mediating SOCE, we hypothesized that ASIC1 contributes to both HPV and the development of CH-induced PH. To test this hypothesis, we examined responses to acute hypoxia in isolated lungs and assessed the effects of CH on indexes of PH, arterial remodeling, and vasoconstrictor reactivity in wild-type (ASIC1+/+) and ASIC1 knockout (ASIC1−/−) mice. Restoration of ASIC1 expression in pulmonary arterial smooth muscle cells from ASIC1−/− mice rescued SOCE, confirming the requirement for ASIC1 in this response. HPV responses were blunted in lungs from ASIC1−/− mice. Both SOCE and receptor-mediated Ca2+ entry, along with agonist-dependent vasoconstrictor responses, were diminished in small pulmonary arteries from control ASIC−/− mice compared with ASIC+/+ mice. The effects of CH to augment receptor-mediated vasoconstrictor and SOCE responses in vessels from ASIC1+/+ mice were not observed after CH in ASIC1−/− mice. In addition, ASIC1−/− mice exhibited diminished right ventricular systolic pressure, right ventricular hypertrophy, and arterial remodeling in response to CH compared with ASIC1+/+ mice. Taken together, these data demonstrate an important role for ASIC1 in both HPV and the development of CH-induced PH.


Sign in / Sign up

Export Citation Format

Share Document