Early high expression of IP-10 in F344 rats resistant to Sendai virus-induced airway injury

2003 ◽  
Vol 285 (6) ◽  
pp. L1263-L1269 ◽  
Author(s):  
Xuezhong Cai ◽  
William L. Castleman

Weanling F344 and BN rats differ markedly in their susceptibility to Sendai virus-induced airway injury. Early gene expression that controls their differences in susceptibility remains poorly understood. In this study we combined suppressive subtractive hybridization and cDNA library array hybridization to identify genes differentially expressed in virus-susceptible BN and virus-resistant F344 rats during the first 3 days after inoculation. Differential expression of selected clones was further verified by quantitative RT-PCR. Seven virus-induced gene segments were identified. Of them, interferon-γ-inducible protein 10 (IP-10), Mx1, and guany-late-binding protein-2 mRNA abundance in infected F344 rats was 201.5, 188.2, and 281.7% higher, respectively, than that of infected BN rats at 2 days after inoculation. In situ hybridization indicated that virus-induced IP-10 was expressed mainly in airway epithelial cells of F344 rats. Sendai virus infection can directly induce IP-10 expression in rat tracheal epithelial cells in vitro. IP-10 early high expression might contribute to the resistance to virus-induced airway disease in F344 rats by promoting Th1 responses and increasing antiviral activity.

2017 ◽  
Vol 4 (S) ◽  
pp. 41 ◽  
Author(s):  
Badrul Hisham Yahaya

Endogenous repair mechanism of airway epithelial cells often fails to achieve sufficient cellular turnover and diminish with age, thus leading to permanent alterations in the structure and function of the airway epithelium. The therapeutic use of stem cells and progenitor cells represents a promising alternative for clinical strategy in treating acute and chronic lung disorders. Aerosol-based cell therapy is a novel therapeutic strategy in enhancing reparative process following both acute and chronic lung injuries. In such background, this study was aimed to determine the effect of aerosol-based cell delivery using MicroSprayer® Aerosolizer in the setting of acute lung injury (ALI) and ovalbumin-induced airway injury in the rabbit. In vitro evaluation revealed that the aerosol technique didn’t cause a significant effect on cell morphology, viability and proliferation capability over the course of cell culture period. Aerosol delivery of airway epithelial cells (AEC) and mesenchymal stem cell (MSC) resulted in uniform distribution in the distal airway and lung interstitial region. Short term assessment showed that cells delivered to the lungs via aerosol was found to be safe for transplantation with no signs of cell rejection and histopathological alterations in the liver and spleen of all treated animals. Histological evidences also demonstrated that administration of AEC and MSC via aerosolization into the respiratory airway prevented lung inflammation as well as resulted in improvement of both alveolar damage and permeability. To our knowledge, this is the first report of aerosol cell delivery via a Microsprayer® Aerosolizer device to the lungs of rabbits to treat airway injuries. Our findings provide a promising evidence that aerosol-based cell therapy may provide a basis for the development of an innovative approach for the treatment lung injuries.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


2018 ◽  
Vol 112 ◽  
pp. 163-168 ◽  
Author(s):  
Cynthia M. Schwartz ◽  
Braedyn A. Dorn ◽  
Selam Habtemariam ◽  
Cynthia L. Hill ◽  
Tendy Chiang ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1281
Author(s):  
Shan Guan ◽  
Max Darmstädter ◽  
Chuanfei Xu ◽  
Joseph Rosenecker

In vitro-transcribed (IVT) mRNA has come into focus in recent years as a potential therapeutic approach for the treatment of genetic diseases. The nebulized formulations of IVT-mRNA-encoding alpha-1-antitrypsin (A1AT-mRNA) would be a highly acceptable and tolerable remedy for the protein replacement therapy for alpha-1-antitrypsin deficiency in the future. Here we show that lipoplexes containing A1AT-mRNA prepared in optimum conditions could successfully transfect human bronchial epithelial cells without significant toxicity. A reduction in transfection efficiency was observed for aerosolized lipoplexes that can be partially overcome by increasing the initial number of components. A1AT produced from cells transfected by nebulized A1AT-mRNA lipoplexes is functional and could successfully inhibit the enzyme activity of trypsin as well as elastase. Our data indicate that aerosolization of A1AT-mRNA therapy constitutes a potentially powerful means to transfect airway epithelial cells with the purpose of producing functional A1AT, while bringing along the unique advantages of IVT-mRNA.


1997 ◽  
Vol 272 (3) ◽  
pp. L486-L493 ◽  
Author(s):  
T. P. Stevens ◽  
J. T. McBride ◽  
J. L. Peake ◽  
K. E. Pinkerton ◽  
B. R. Stripp

Pulmonary neuroendocrine cells (PNECs) are airway epithelial cells that are capable of secreting a variety of neuropeptides. PNECs are scattered throughout the bronchial tree either as individual cells or clusters of cells termed neuroepithelial bodies (NEBs). PNECs and their secretory peptides have been considered to play a role in fetal lung development. Although the normal physiological function of PNECs and neuropeptides in normal adult lungs and in repair from lung injury is not known, PNEC hyperplasia has been associated with chronic lung diseases, such as bronchopulmonary dysplasia, and with chronic exposures, such as hypoxia, tobacco smoke, nitrosamines, and ozone. To evaluate changes in PNEC number and distribution after acute airway injury, FVB/n mice were treated with either naphthalene or vehicle. Naphthalene is an aromatic hydrocarbon that, at the dose used in this study, selectively destroys nonciliated bronchial epithelial cells (Clara cells) through cytochrome P-450-mediated metabolic activation into cytotoxic epoxides. PNECs were identified by immunohistochemical analysis of calcitonin gene-related peptide-like immunoreactivity (CGRP-IR). Proliferating cells were marked with [(3)H]thymidine incorporation. Acute naphthalene toxicity results in PNEC hyperplasia that is detectable after 5 days of recovery. PNEC hyperplasia is characterized by increased numbers of NEBs without significant changes in the number of isolated PNECs and by increased [(3)H]thymidine labeling of CGRP-IR cells. These data show that cell proliferation contributes to PNEC hyperplasia after acute airway injury and suggest that PNECs may be capable of more rapidly increasing their number in response to injury than previously recognized.


1994 ◽  
Vol 266 (6) ◽  
pp. L612-L619 ◽  
Author(s):  
R. B. Devlin ◽  
K. P. McKinnon ◽  
T. Noah ◽  
S. Becker ◽  
H. S. Koren

Acute exposure of animals and humans to ozone results in decrements in lung function, development of airway hyperreactivity, inflammation, edema, damage to pulmonary cells, and production of several compounds with tissue damaging, fibrinogenic or fibrotic potential. The contribution of airway epithelial cells and alveolar macrophages to these processes is unclear. In this study we have directly exposed human alveolar macrophages and human airway epithelial cells to ozone in vitro and measured the cytotoxic effects of ozone, as well as the production of the inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8), and fibronectin, all of which are substantially elevated in the bronchoalveolar lavage fluid of humans exposed to ozone. Cells were grown on rigid, collagen-impregnated filter supports, and the interaction of cells with ozone facilitated by exposing them to the gas with medium below the support but no medium on top of the cells. The results show that, although macrophages are much more sensitive to ozone than epithelial cells, they do not produce increased amounts of IL-6, IL-8, or fibronectin following ozone exposure. In contrast, epithelial cells produce substantially more of all three proteins following ozone exposure, and both IL-6 and fibronectin are secreted vectorially. An immortalized human airway epithelial cell line (BEAS 2B) was used in these experiments since human airway epithelial cells are infrequently available for in vitro studies. Data from this study extend previous findings which suggest that the BEAS cell line is a useful model to study the interaction between airway epithelial cells and environmental toxicants.


Sign in / Sign up

Export Citation Format

Share Document