Simultaneous inactivation of GSK-3β suppresses quercetin-induced apoptosis by inhibiting the JNK pathway

2013 ◽  
Vol 304 (11) ◽  
pp. L782-L789 ◽  
Author(s):  
Kyoung-Hee Lee ◽  
Chul-Gyu Yoo

Quercetin, a ubiquitous bioactive plant flavonoid, has shown to exert a broad range of activities, such as apoptotic, antioxidant, and anti-inflammatory effects. Thus, flavonoids can mediate both cell protection and cell injury. Recently, quercetin has been reported to prevent the progression of emphysema in animal models through antioxidant and anti-inflammatory actions. These findings suggest that quercetin could be a potential treatment option for chronic obstructive pulmonary disease. Its clinical application, however, could be limited by the cytotoxicity of quercetin, and understanding of the apoptotic mechanisms of quercetin is a prerequisite to develop a therapeutic strategy with minimal cytotoxicity. We evaluated the apoptotic effect of quercetin and its molecular mechanisms in normal bronchial epithelial cells (BEAS-2B cells). Quercetin decreased the viability of BEAS-2B cells via apoptosis in a dose- and time-dependent manner. Quercetin activated JNK and increased the expression levels of c-Jun and p53-dependent Bax. Blockade of JNK activation by overexpression of dominant negative JNK1 suppressed apoptosis by quercetin via inhibition of caspase-3 activation and reduction of p53 and Bax expression. Simultaneously, quercetin inactivated glycogen synthase kinase (GSK)-3β, which is phosphatidylinositol 3-kinase/Akt dependent. Overexpression of a constitutively active GSK-3β mutant enhanced quercetin-induced JNK activation. In contrast, overexpression of enzymatically inert GSK-3β inhibited JNK activation, resulting in a suppression of apoptosis by quercetin. Taken together, the JNK-p53 pathway is involved in quercetin-induced apoptosis, and simultaneous inactivation of GSK-3β can attenuate apoptosis in normal bronchial epithelial cells.

2003 ◽  
Vol 178 (1) ◽  
pp. 37-43 ◽  
Author(s):  
GM Walsh ◽  
DW Sexton ◽  
MG Blaylock

Anti-inflammatory therapy in asthma is reliant on corticosteroids, particularly in their inhaled form. However, steroids are rather non-specific in their actions and they also raise concerns regarding compliance and side-effect Issues. Furthermore, a small proportion of patients with asthma fail to respond to oral glucocorticoids even at high doses. This Article will review the role that steroids and membrane receptor ligation play in the induction of eosinophil apoptosis together with the mechanisms by which corticosteroids enhance the disposal of apoptotic eosinophils by both professional and non-professional phagocytes. Eosinophils are thought to be the major pro-inflammatory effector cell in asthma and their persistence in the airways is probably enhanced by the presence of several asthma-relevant cytokines that prolong eosinophil survival by inhibition of apoptosis (interleukin (IL)-3, IL-5, granulocyte-macrophage colony-stimulating factor, IL-9, IL-13, IL-15). In contrast, a number of signals have been described that accelerate apoptosis in human eosinophils including corticosteroids or ligation of membrane receptors (CD95, CD45, CD69). Thus, the load of lung eosinophils in asthmatic disease is likely to be related to a balance in the tIssue microenvironment between pro- and anti-apoptotic signals. Furthermore, removal of apoptotic eosinophils by phagocytosis by alveolar macrophages or bronchial epithelial cells in a specific receptor-mediated way is as important as the process of apoptosis induction. Corticosteroids enhance the recognition and engulfment of apoptotic eosinophils by macrophages or bronchial epithelial cells. Caspases are key intracellular molecules in the control of apoptosis and defects in caspase-induced apoptosis in eosinophils from steroid-resistant individuals may contribute to the molecular mechanisms underlying glucocorticoid insensitivity in these cells. These findings point the way to new and more targeted anti-inflammatory therapy for asthma and may provide important clues for the development of alternative therapies for glucocorticoid resistance.


2004 ◽  
Vol 48 (5) ◽  
pp. 1581-1585 ◽  
Author(s):  
Masashi Desaki ◽  
Hitoshi Okazaki ◽  
Toshiaki Sunazuka ◽  
Satoshi Omura ◽  
Kazuhiko Yamamoto ◽  
...  

ABSTRACT Long-term macrolide therapy has been proven to improve survival in patients with diffuse panbronchiolitis. Although its mechanisms remain unknown, previous studies have suggested the effects of macrolide might be anti-inflammatory rather than antibacterial. To elucidate the molecular mechanisms of its action, we studied here the effects of erythromycin (EM) and its new derivative, EM703, which shows no antibacterial action, on the activation of the transcription factor nuclear factor-κB (NF-κB) in human bronchial epithelial cells. Western blotting analysis showed that EM did not inhibit the degradation of IκBα, suggesting the molecular target for EM was not the dissociation of NF-κB from IκB. An electrophoretic mobility shift assay showed that EM did not interrupt the NF-κB DNA-binding activity in the nucleus under the conditions tested. Moreover, not only EM but also EM703 suppressed the activation of NF-κB and the production of interleukin-8, demonstrating that the anti-inflammatory action of the macrolide is independent of its antibacterial activity. Taken together, these data suggest EM has an anti-inflammatory action, presumably via an interaction with the NF-κB signaling pathway in the downstream of the dissociation from IκB, resulting in the inhibition of NF-κB.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Bo Tang ◽  
Yue Xi ◽  
Fengmei Cui ◽  
Jin Gao ◽  
Huiqin Chen ◽  
...  

Abstract Objective: The present study aimed to analyze the mechanism by which long-term occupational exposure of workers to low-dose ionizing irradiation induces epithelial–mesenchymal transition (EMT) of the human bronchial epithelial cells using transcriptome profiling. Methods: RNA-seq transcriptomics was used to determine gene expression in blood samples from radiation-exposed workers followed by bioinformatics analysis. Normal bronchial epithelial cells (16HBE) were irradiated for different durations and subjected to immunofluorescence, Western blotting, scratch healing, and adhesion assays to detect the progression of EMT and its underlying molecular mechanisms. Results: Transcriptomics revealed that exposure to ionizing radiation led to changes in the expression of genes related to EMT, immune response, and migration. At increased cumulative doses, ionizing radiation-induced significant EMT, as evidenced by a gradual decrease in the expression of E-cadherin, increased vimentin, elevated migration ability, and decreased adhesion capability of 16HBE cells. The expression of fibronectin 1 (FN1) showed a gradual increase with the progression of EMT, and may be involved in EMT. Conclusion: Ionizing radiation induces EMT. FN1 may be involved in the progression of EMT and could serve as a potential biomarker for this process.


2019 ◽  
Vol 86 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Chenxu Zhao ◽  
Yazhou Wang ◽  
Xue Yuan ◽  
Guoquan Sun ◽  
Bingyu Shen ◽  
...  

AbstractSubacute ruminal acidosis (SARA) can increase the level of inflammation and induce rumenitis in dairy cows. Berberine (BBR) is the major active component of Rhizoma Coptidis, which is a type of Chinese anti-inflammatory drug for gastrointestinal diseases. The purpose of this study was to investigate the anti-inflammatory effects of BBR on lipopolysaccharide (LPS)-stimulated rumen epithelial cells (REC) and the underlying molecular mechanisms. REC were cultured and stimulated with LPS in the presence or absence of different concentrations of BBR. The results showed that cell viability was not affected by BBR. Moreover, BBR markedly decreased the concentrations and mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the LPS-treated REC in a dose-dependent manner. Importantly, Western blotting analysis showed that BBR significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the phosphorylation of nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in LPS-treated REC. Furthermore, the results of immunocytofluorescence showed that BBR significantly inhibited the nuclear translocation of NF-κB p65 induced by LPS treatment. In conclusion, the protective effects of BBR on LPS-induced inflammatory responses in REC may be due to its ability to suppress the TLR4-mediated NF-κB and MAPK signaling pathways. These findings suggest that BBR can be used as an anti-inflammatory drug to treat inflammation induced by SARA.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Giulia Anzalone ◽  
Giuseppe Arcoleo ◽  
Fabio Bucchieri ◽  
Angela M. Montalbano ◽  
Roberto Marchese ◽  
...  

Abstract Cigarette smoke is a risk factor for COPD and lung cancer. In cancer, epigenetic modifications affect the expression of Enhancer of Zester Homolog 2 (EZH2), and silenced disabled homolog 2 interacting protein gene (DAB2IP) (onco-suppressor gene) by Histone H3 tri-methylation in lysine 27 (H3K27me3). In“ex vivo”studies, we assessed EZH2, H3K27me3 and DAB2IP immunoreactivity in bronchial epithelial cells from COPD patients (smokers, ex-smokers), Smoker and control subjects. In“in vitro” experiments we studied the effect of cigarette smoke extract (CSE) on EZH2/H3K27me3/DAB2IP expression, apoptosis, invasiveness, and vimentin expression in 16HBE, primary cells, and lung cancer cell lines (A549) long-term exposed to CSE. Finally, in “in vitro”studies, we tested the effect of GSK343 (selective inhibitor of EZH2). EZH2 and H3K27me3 expression was higher, while DAB2IP was lower levels, in bronchial epithelium from COPD and Smokers than in Controls. CSE increased EZH2, H3K27me3 expression and decreased DAB2IP, cell apoptosis and invasiveness in epithelial cells. GSK343 restored the effects of CSE. Cigarette smoke affects EZH2 expression, and reduced DAB2IP via H3K27me3 in COPD patients. The molecular mechanisms associated with EZH2 expression, generate a dysregulation of cell apoptosis, mesenchymal transition, and cell invasiveness in bronchial epithelial cells, encouraging the progression of airway inflammation toward lung cancer in COPD patients.


2009 ◽  
Vol 10 (1) ◽  
Author(s):  
Gregor S Zimmermann ◽  
Claus Neurohr ◽  
Heidrun Villena-Hermoza ◽  
Rudolf Hatz ◽  
Juergen Behr

Sign in / Sign up

Export Citation Format

Share Document