Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography

2015 ◽  
Vol 308 (10) ◽  
pp. L1039-L1045 ◽  
Author(s):  
Mamoru Sasaki ◽  
Shotaro Chubachi ◽  
Naofumi Kameyama ◽  
Minako Sato ◽  
Mizuha Haraguchi ◽  
...  

Chronic cigarette smoke (CS) exposure provokes variable changes in the lungs, and emphysema is an important feature of chronic obstructive pulmonary disease. The usefulness of micro-computed tomography (CT) to assess emphysema in different mouse models has been investigated, but few studies evaluated the dynamic structural changes in a CS-induced emphysema mouse model. A novel micro-CT technique with respiratory and cardiac gating has resulted in high-quality images that enable processing for further quantitative and qualitative analyses. Adult female C57BL/6J mice were repeatedly exposed to mainstream CS, and micro-CT scans were performed at 0, 4, 12, and 20 wk. Emphysema was also histologically quantified at each time point. Air-exposed mice and mice treated with intratracheal elastase served as controls and comparisons, respectively. End-expiratory lung volume, corresponding to functional residual volume, was defined as the calculated volume at the phase of end-expiration, and it evaluated air trapping. The end-expiratory lung volumes of CS-exposed mice were significantly larger than those of air controls at 12 and 20 wk, which was in line with alveolar enlargement and destruction by histological quantification. However, CS exposure neither increased low attenuation volume nor decreased the average lung CT value at any time point, unlike the elastase-instilled emphysema model. CS-exposed mice had rather higher average lung CT values at 4 and 12 wk. This is the first study characterizing a CS-induced emphysema model on micro-CT over time in mice. Moreover, these findings extend our understanding of the distinct pathophysiology of CS-induced emphysema in mice.

Author(s):  
Naoya Tanabe ◽  
Shizuo Kaji ◽  
Susumu Sato ◽  
Tomoo Yokoyama ◽  
Tsuyoshi Oguma ◽  
...  

Three-dimensional imaging is essential to evaluate local abnormalities and understand structure-function relationships in an organ. However, quantifiable and interpretable methods to localize abnormalities remain unestablished. Visual assessments are prone to bias, machine learning methods depend on training images, and the underlying decision principle is usually difficult to interpret. Here, we developed a homological approach to mathematically define emphysema and fibrosis in the lungs on computed tomography (CT). Using persistent homology, the density of homological features, including connected components, tunnels, and voids, was extracted from the volumetric CT scans of lung diseases. A pair of CT values at which each homological feature appeared (birth) and disappeared (death) was computed by sweeping the threshold levels from higher to lower CT values. Consequently, fibrosis and emphysema were defined as voxels with dense voids having a longer lifetime (birth-death difference) and voxels with dense connected components having a lower birth, respectively. In an independent dataset including subjects with idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and combined pulmonary fibrosis and emphysema (CPFE), the proposed definition enabled accurate segmentation with comparable quality to deep learning in terms of Dice coefficients. Persistent homology-defined fibrosis was closely associated with physiological abnormalities such as impaired diffusion capacity and long-term mortality in subjects with IPF and CPFE, and persistent homology-defined emphysema was associated with impaired diffusion capacity in subjects with COPD. The present persistent homology-based evaluation of structural abnormalities could help explore the clinical and physiological impacts of structural changes and morphological mechanisms of disease progression.


2017 ◽  
Vol 49 (1) ◽  
pp. 1600345 ◽  
Author(s):  
Reza Karimi ◽  
Göran Tornling ◽  
Helena Forsslund ◽  
Mikael Mikko ◽  
Åsa M. Wheelock ◽  
...  

We investigated regional air trapping on computed tomography in current smokers with normal spirometry. It was hypothesised that presence of regional air trapping may indicate a specific manifestation of smoking-related changes.40 current smokers, 40 patients with chronic obstructive pulmonary disease (COPD), and 40 healthy never- smokers underwent computed tomography scans. Regional air trapping was assessed on end-expiratory scans and emphysema, micronodules and bronchial wall thickening on inspiratory scans. The ratio of expiratory and inspiratory mean lung attenuation (E/I) was calculated as a measure of static (fixed) air trapping.Regional air trapping was present in 63% of current smokers, in 45% of never smokers and in 8% of COPD patients (p<0.001). Current smokers with and without regional air trapping had E/I ratio of 0.81 and 0.91, respectively (p<0.001). Forced expiratory volume in 1 s (FEV1) was significantly higher and emphysema less frequent in current smokers with regional air trapping.Current smokers with regional air trapping had higher FEV1 and less emphysema on computed tomography. In contrast, current smokers without regional air trapping resembled COPD. Our results highlight heterogeneity among smokers with normal spirometry and may contribute to early detection of smoking related structural changes in the lungs.


2021 ◽  
Vol 21 (12) ◽  
pp. 6041-6047
Author(s):  
Meiru Mao ◽  
Jianglong Kong ◽  
Kui Chen ◽  
Jiaxin Zhang ◽  
Ziteng Chen ◽  
...  

Nano-particulate matters (NPM) induced the lung injury in mice were evaluated using quantitative micro-computed tomography in the present article. It is an important negative effect of health problems that NPM exposure provokes changes in the lung injury. The micro-computed tomography (CT) to assess lung injury in mouse models has been investigated. The dynamic structural changes in a NPM-induced lung injury mouse mode were monitored. Adults female BALB/C mice were repeatedly exposed to NPM, and micro-CT scans were performed at day 0, 3, 5 and 9. Lung samples were also collected for histological analysis at each time point. The total lung volume, the injured lung volume, and the normal lung volume were defined and calculated volume during the phase of NPM-exposure on the mice. The total and injured lung volumes of NPM-exposed mice were significantly larger than those of the mice at day 5 and 9. The data from micro-CT was consistent with alveolar enlargement and destruction by histological quantification from pathological section. The study for NPM-induced lung injury model by micro-CT may extend our understanding of the distinct pathophysiology of NPM induced lung injury in mice.


2018 ◽  
Vol 51 (2) ◽  
pp. 1701245 ◽  
Author(s):  
Naoya Tanabe ◽  
Dragoş M. Vasilescu ◽  
Miranda Kirby ◽  
Harvey O. Coxson ◽  
Stijn E. Verleden ◽  
...  

The small conducting airways are the major site of obstruction in chronic obstructive pulmonary disease (COPD). This study examined small airway pathology using a novel combination of multidetector row computed tomography (MDCT), micro-computed tomography (microCT) and histology.Airway branches visible on specimen MDCT were counted and the dimensions of the third- to fifth-generation airways were computed, while the terminal bronchioles (designated TB), preterminal bronchioles (TB-1) and pre-preterminal bronchioles (TB-2) were examined with microCT and histology in eight explanted lungs with end-stage COPD and seven unused donor lungs that served as controls.On MDCT, COPD lungs showed a decrease in the number of 2–2.5 mm diameter airways and the lumen area of fifth-generation airways, while on microCT there was a reduction in the number of terminal bronchioles as well as a decrease in the luminal areas, wall volumes and alveolar attachments to the walls of TB, TB-1 and TB-2 bronchioles. The combination of microCT and histology showed increased B-cell infiltration into the walls of TB-1 and TB-2 bronchioles, and this change was correlated with a reduced number of alveolar attachments in COPD.Small airways disease extends from 2 mm diameter airways to the terminal bronchioles in COPD. Destruction of alveolar attachments may be driven by a B-cell-mediated immune response in the preterminal bronchioles.


2021 ◽  
pp. 00307-2021
Author(s):  
Miranda Kirby ◽  
Benjamin M. Smith ◽  
Naoya Tanabe ◽  
James C. Hogg ◽  
Harvey O. Coxson ◽  
...  

There is limited understanding of how to identify people at high risk of developing chronic obstructive pulmonary disease (COPD). Our objective was to investigate the association between computed tomography (CT) total airway count (TAC) and incident COPD over 3-years among ever-smokers from the population-based Canadian Cohort Obstructive Lung Disease (CanCOLD) study.CT and spirometry were acquired in ever-smokers at baseline; spirometry was repeated at 3-year follow-up. CT TAC was generated by summing all airway segments in the segmented airway tree (VIDA Diagnostics, Inc.). CT airway wall area, wall thickness for a theoretical airway with 10 mm perimeter (Pi10), and low attenuation areas below −856HU (LAA856) were also measured. Logistic and mixed effects regression models were constructed to determine the association for CT measurements with development of COPD and FEV1/FVC decline, respectively.Among 316 at risk participants evaluated at baseline (65±9 years, 40% female, 18±19 pack-years), incident COPD was detected in 56 participants (18%) over a median 3.1±0.6 years of follow-up. Among CT measurements, only TAC was associated with incident COPD (p=0.03), where a 1-sd decrement in TAC increased the odds ratio for incident COPD by a factor of two. In a multivariable linear regression model, reduced TAC was significantly associated with greater longitudinal FEV1/FVC decline (p=0.03), but no other measurements were significant.CT TAC predicts incident COPD in at risk smokers, indicating that smokers exhibit early structural changes associated with COPD prior to abnormal spirometry.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Huanyue Cui ◽  
Xueying Liu ◽  
Jin Zhang ◽  
Ke Zhang ◽  
Dahong Yao ◽  
...  

The root cause behind the development of chronic obstructive pulmonary disease (COPD) is cigarette smoke that induces the inflammation of the lung tissue and alveolar destruction. Long-term cigarette smoking can lead to deterioration in lung parenchymal function and cause structural changes in the lung, further resulting in pulmonary fibrosis. Rhodiola rosea L., a traditional medicinal perennial herb, is well known for its numerous pharmacological benefits, including anti-inflammation, antioxidant, antifatigue, antidepressive, and antifibrotic properties. Here, we evaluated the pharmacological effects and mechanisms of the Rhodiola rosea L. (RRL) macroporous resin extract on COPD caused by lipopolysaccharide (LPS) and cigarette smoke (CS) in rats. The RRL significantly improved the pathological structure of the lung tissue. Additionally, RRL decreased the infiltration of inflammatory cells and, subsequently, oxidative stress. Furthermore, the RNAseq assay indicated that RRL attenuated the CS and LPS-induced COPD via anti-inflammatory, antifibrotic, and antiapoptotic activities. Western blot analysis substantiated that the RRL resulted in upregulated levels of Nrf2 and HO-1 as well as downregulated levels of IκBα, NF-κB p65, α-SMA, and TGF-β1. Interestingly, the RRL could protect rats from CS and LPS-induced COPD by inhibiting the ERK1/2 and Smad3 signaling pathways and apoptosis. Thus, the RRL could attenuate CS and LPS-induced COPD through inflammation inhibition and antioxidant and antifibrosis pathways.


Sign in / Sign up

Export Citation Format

Share Document