Evaluation of Nano-Particulate-Matter-Induced Lung Injury in Mice Using Quantitative Micro-Computed Tomography

2021 ◽  
Vol 21 (12) ◽  
pp. 6041-6047
Author(s):  
Meiru Mao ◽  
Jianglong Kong ◽  
Kui Chen ◽  
Jiaxin Zhang ◽  
Ziteng Chen ◽  
...  

Nano-particulate matters (NPM) induced the lung injury in mice were evaluated using quantitative micro-computed tomography in the present article. It is an important negative effect of health problems that NPM exposure provokes changes in the lung injury. The micro-computed tomography (CT) to assess lung injury in mouse models has been investigated. The dynamic structural changes in a NPM-induced lung injury mouse mode were monitored. Adults female BALB/C mice were repeatedly exposed to NPM, and micro-CT scans were performed at day 0, 3, 5 and 9. Lung samples were also collected for histological analysis at each time point. The total lung volume, the injured lung volume, and the normal lung volume were defined and calculated volume during the phase of NPM-exposure on the mice. The total and injured lung volumes of NPM-exposed mice were significantly larger than those of the mice at day 5 and 9. The data from micro-CT was consistent with alveolar enlargement and destruction by histological quantification from pathological section. The study for NPM-induced lung injury model by micro-CT may extend our understanding of the distinct pathophysiology of NPM induced lung injury in mice.

2015 ◽  
Vol 308 (10) ◽  
pp. L1039-L1045 ◽  
Author(s):  
Mamoru Sasaki ◽  
Shotaro Chubachi ◽  
Naofumi Kameyama ◽  
Minako Sato ◽  
Mizuha Haraguchi ◽  
...  

Chronic cigarette smoke (CS) exposure provokes variable changes in the lungs, and emphysema is an important feature of chronic obstructive pulmonary disease. The usefulness of micro-computed tomography (CT) to assess emphysema in different mouse models has been investigated, but few studies evaluated the dynamic structural changes in a CS-induced emphysema mouse model. A novel micro-CT technique with respiratory and cardiac gating has resulted in high-quality images that enable processing for further quantitative and qualitative analyses. Adult female C57BL/6J mice were repeatedly exposed to mainstream CS, and micro-CT scans were performed at 0, 4, 12, and 20 wk. Emphysema was also histologically quantified at each time point. Air-exposed mice and mice treated with intratracheal elastase served as controls and comparisons, respectively. End-expiratory lung volume, corresponding to functional residual volume, was defined as the calculated volume at the phase of end-expiration, and it evaluated air trapping. The end-expiratory lung volumes of CS-exposed mice were significantly larger than those of air controls at 12 and 20 wk, which was in line with alveolar enlargement and destruction by histological quantification. However, CS exposure neither increased low attenuation volume nor decreased the average lung CT value at any time point, unlike the elastase-instilled emphysema model. CS-exposed mice had rather higher average lung CT values at 4 and 12 wk. This is the first study characterizing a CS-induced emphysema model on micro-CT over time in mice. Moreover, these findings extend our understanding of the distinct pathophysiology of CS-induced emphysema in mice.


2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier Alba-Tercedor ◽  
Wayne B. Hunter ◽  
Ignacio Alba-Alejandre

AbstractThe Asian citrus psyllid (ACP), Diaphorina citri, is a harmful pest of citrus trees that transmits Candidatus Liberibacter spp. which causes Huanglongbing (HLB) (citrus greening disease); this is considered to be the most serious bacterial disease of citrus plants. Here we detail an anatomical study of the external and internal anatomy (excluding the reproductive system) using micro-computed tomography (micro-CT). This is the first complete 3D micro-CT reconstruction of the anatomy of a psylloid insect and includes a 3D reconstruction of an adult feeding on a citrus leaf that can be used on mobile devices. Detailed rendered images and videos support first descriptions of coxal and scapus antennal glands and sexual differences in the internal anatomy (hindgut rectum, mesothoracic ganglion and brain). This represents a significant advance in our knowledge of ACP anatomy, and of psyllids in general. Together the images, videos and 3D model constitute a unique anatomical atlas and are useful tools for future research and as teaching aids.


2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


2019 ◽  
Vol 25 ◽  
pp. 6351-6358
Author(s):  
Gabrielė Česaitienė ◽  
Tadas Venskutonis ◽  
Vita Mačiulskienė ◽  
Vaidotas Cicėnas ◽  
Vykintas Samaitis ◽  
...  

2021 ◽  
pp. 002199832110338
Author(s):  
Elisson BD da Rocha ◽  
Ana Maria F de Sousa ◽  
Ana Lúcia N da Silva ◽  
Cristina RG Furtado ◽  
Marcos V Colaço ◽  
...  

This study reports the reinforcement degree investigation of two types of rockwool fibers (F1 and F2), in nitrile rubber composites. The micro-computed tomography (micro-CT) 3D images showed that both fibers were well-dispersed in the NBR matrix, without a preferential orientation. The micro-CT analysis also allowed quantifying volume fraction, inter-fiber distance, and aspect ratio. Those morphometric parameters were used for supporting the composites rheological behavior assessment. Changes in the elastic modulus and phase angle followed the same trend of the inter-fiber distance values, regardless the type of fiber. Both volume fraction and aspect ratio data from the micro-CT analysis were used to predict theoretical values of elastic modulus using the Guth-Gold and modified Guth-Gold equations, and the results obtained were compared to the rheological experimental data. This analysis was helpful to better understand the rockwool fibers reinforcement degree differences in the production of the nitrile rubber composites.


Author(s):  
Davide Ippolito ◽  
Maria Ragusi ◽  
Davide Gandola ◽  
Cesare Maino ◽  
Anna Pecorelli ◽  
...  

Abstract Objectives To evaluate a semi-automated segmentation and ventilated lung quantification on chest computed tomography (CT) to assess lung involvement in patients affected by SARS-CoV-2. Results were compared with clinical and functional parameters and outcomes. Methods All images underwent quantitative analyses with a dedicated workstation using a semi-automatic lung segmentation software to compute ventilated lung volume (VLV), Ground-glass opacity (GGO) volume (GGO-V), and consolidation volume (CONS-V) as absolute volume and as a percentage of total lung volume (TLV). The ratio between CONS-V, GGO-V, and VLV (CONS-V/VLV and GGO-V/VLV, respectively), TLV (CONS-V/TLV, GGO-V/TLV, and GGO-V + CONS-V/TLV respectively), and the ratio between VLV and TLV (VLV/TLV) were calculated. Results A total of 108 patients were enrolled. GGO-V/TLV significantly correlated with WBC (r = 0.369), neutrophils (r = 0.446), platelets (r = 0.182), CRP (r = 0.190), PaCO2 (r = 0.176), HCO3− (r = 0.284), and PaO2/FiO2 (P/F) values (r = − 0.344). CONS-V/TLV significantly correlated with WBC (r = 0.294), neutrophils (r = 0.300), lymphocytes (r = −0.225), CRP (r = 0.306), PaCO2 (r = 0.227), pH (r = 0.162), HCO3− (r = 0.394), and P/F (r = − 0.419) values. Statistically significant differences between CONS-V, GGO-V, GGO-V/TLV, CONS-V/TLV, GGO-V/VLV, CONS-V/VLV, GGO-V + CONS-V/TLV, VLV/TLV, CT score, and invasive ventilation by ET were found (all p < 0.05). Conclusion The use of quantitative semi-automated algorithm for lung CT elaboration effectively correlates the severity of SARS-CoV-2-related pneumonia with laboratory parameters and the need for invasive ventilation. Key Points • Pathological lung volumes, expressed both as GGO-V and as CONS-V, can be considered a useful tool in SARS-CoV-2-related pneumonia. • All lung volumes, expressed themselves and as ratio with TLV and VLV, correlate with laboratory data, in particular C-reactive protein and white blood cell count. • All lung volumes correlate with patient’s outcome, in particular concerning invasive ventilation.


Sign in / Sign up

Export Citation Format

Share Document