Simple technique for culture of highly differentiated cells from dog tracheal epithelium

1991 ◽  
Vol 261 (2) ◽  
pp. L106-L117 ◽  
Author(s):  
M. Kondo ◽  
W. E. Finkbeiner ◽  
J. H. Widdicombe

Cultures of dog tracheal epithelium have proved very useful in studies of ion transport. Their short-circuit current (Isc), however, is usually much less than the original tissue. We have tested a variety of conditions in an attempt to produce large numbers of cells with electrical properties comparable with the original tissue. Of several growth supports, human placental collagen (HPC) gave the best results. When plated at 2.5 x 10(5) cells/cm2 onto HPC, cells grown in serum-free, growth factor-supplemented medium (GF medium) showed increases in cells per unit area, thickness of cell sheet, numbers of domes, numbers of apical microvilli, and degree of basolateral membrane interdigitation compared with cells grown in medium containing 5% fetal calf serum (FCS medium). Transepithelial resistance (Rte) and the increases in Isc and intracellular Ca in response to isoproterenol were also increased. However, baseline Isc and adenosine 3',5'-cyclic monophosphate levels were not changed. The improved electrical properties were maintained for up to 4 mo. GF medium combined with an air interface produced further increases in Rte, Isc, and changes in Isc in response to amiloride and isoproterenol. Ultrastructural features such as the presence of cilia, greater thickness of the cell sheet, and increased amplification of apical and basolateral membranes also indicated improved differentiation. Our results show that GF medium and an air interface can be combined with a simple growth support and a relatively low-plating density to allow the easy production of greater than 500 cm2 of cultured cells from a single trachea, with a level of differentiation similar to that of the original tissue.

1990 ◽  
Vol 259 (6) ◽  
pp. L459-L467 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O3'Grady

Equine tracheal epithelium, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasmalike Ringer solution generates a serosa-positive transepithelial potential of 10–22 mV and a short-circuit current (Isc) of 70–200 microA/cm2. Mucosal amiloride (10 microM) causes a 40–60% decrease in Isc and inhibits the net transepithelial Na flux by 95%. Substitution of Cl with gluconate resulted in a 30% decrease in basal Isc. Bicarbonate substitution with 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid decreased the Isc by 21%. The Cl-dependent Isc was inhibited by serosal addition of 1 mM amiloride. Bicarbonate replacement or serosal amiloride (1 mM) inhibits the net Cl flux by 72 and 69%, respectively. Bicarbonate replacement significantly reduces the effects of serosal amiloride (1 mM) on Isc, indicating its effect is HCO3 dependent. Addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 microM) causes a 40% increase in Isc. This effect is inhibited by subsequent addition of 10 microM serosal bumetanide. Bumetanide (10 microM) reduces net Cl secretion following stimulation with 8-BrcAMP (100 microM). Serosal addition of BaCl2 (1 mM) causes a reduction in Isc equal to that following Cl replacement in the presence or absence of 100 microM cAMP. These results suggest that 1) Na absorption depends on amiloride-inhibitable Na channels in the apical membrane, 2) Cl influx across the basolateral membrane occurs by both a Na-H/Cl-HCO3 parallel exchange mechanism under basal conditions and by a bumetanide-sensitive Na-(K?)-Cl cotransport system under cAMP-stimulated conditions, and 3) basal and cAMP-stimulated Cl secretion depends on Ba-sensitive K channels in the basolateral membrane.


1983 ◽  
Vol 244 (6) ◽  
pp. F639-F645 ◽  
Author(s):  
M. J. Welsh

Addition of barium ion, Ba2+, to the submucosal bathing solution of canine tracheal epithelium reversibly decreased the short-circuit current and increased transepithelial resistance. The decrease in short-circuit current represented a decrease in the net rate of Cl secretion with no change in the rate of Na absorption. Intracellular microelectrode techniques and an equivalent electrical circuit analysis were used to localize the effect of Ba2+ to an inhibition of the permeability of the basolateral membrane to K. Ba2+ (2 mM) doubled basolateral membrane resistance, decreased the equivalent electromotive force at the basolateral membrane, and decreased the magnitude of the depolarization of basolateral membrane voltage produced by increasing the submucosal K concentration. The inhibition of the basolateral K permeability depolarized the negative intracellular voltage, resulting in both a decrease in the driving force for Cl exit and an estimated increase in intracellular Cl concentration. These studies indicate that there is a Ba2+-inhibitable K conductance at the basolateral membrane of tracheal epithelial cells and that the K permeability plays an important role in the generation of the negative intracellular electrical potential that provides the driving force for Cl exit from the cell.


1978 ◽  
Vol 44 (6) ◽  
pp. 900-904 ◽  
Author(s):  
M. G. Marin ◽  
M. M. Zaremba

Active transport of Cl- toward the tracheal lumen and Na+ away from the lumen creates an electrical potential difference across dog tracheal epithelium. This study examined in vitro the effect of varying calcium concentration in the bathing media on the ion transport and electrical properties of dog tracheal epithelium. In six pairs of epithelia, changing calcium concentration from 1.9 to 0 mM resulted in a significant decrease in electrical resistance, from 318 +/- 36 to 214 +/- 24 omega.cm2. Short-circuit current and net Cl- and Na+ fluxes measured under short-circuit conditions were not changed significantly. Changing calcium concentration from 1.9 to 10 mM resulted in no significant change from control in the electrical properties nor in net Cl- and Na+ fluxes (short-circuit conditions). Histamine (10(-4) M) produced a significantly smaller increase in short-circuit current in 0 than in 1.9 mM Ca2+ (+5 +/- 2 vs. +12 +/- 2 microamperemeter/cm2). However, electrical changes were not significantly different in 1 or 10 mM Ca2+. These results indicate that calcium lack increased permeability of tracheal epithelium and that the increase in short-circuit current due to histamine depended in part on calcium.


1988 ◽  
Vol 255 (6) ◽  
pp. F1160-F1169 ◽  
Author(s):  
R. F. Husted ◽  
M. Hayashi ◽  
J. B. Stokes

We examined the electrophysiological and Na+ transport characteristics of rat papillary collecting duct (PCD) cells grown in primary cultures. Grown as monolayers on polycarbonate filters, the cells displayed similar morphological characteristics to native epithelia. They also bound Dolichus biflorus lectin, a property shared by native cells. Monolayers developed a peak electrical resistance of 100-200 omega.cm2 and a transmonolayer voltage of less than 2 mV. Similar values were measured in the perfused, native PCD of the same species as well as PCD cells cultured from rabbit and bovine kidneys. Hamster cells did not readily develop confluent monolayers under the same conditions. Exposure of the cultured cells to 10% fetal calf serum for 24 h caused the Na+ uptake across the apical membrane to double, an effect not reproduced by indomethacin, insulin, vasopressin, aldosterone, dexamethasone, or hexamethylene bisacetamide (an inducer of differentiation). Amiloride (1 mM) inhibited Na+ uptake by 50-80%. The measured short-circuit current did not correlate with Na+ uptake and was clearly dissociated by exposure to serum. The results suggest that there is more than one mechanism of ion transport by the rat PCD.


1991 ◽  
Vol 261 (4) ◽  
pp. L290-L295 ◽  
Author(s):  
P. Fong ◽  
A. C. Chao ◽  
J. H. Widdicombe

In confluent primary cultures of dog tracheal epithelium, we tested whether Cl entry across the basolateral membrane is by cotransport with K. Two approaches were taken. First, we measured the inhibition of short-circuit current (Isc) by the K channel inhibitor, Ba2+. Consistent with Na-K-2Cl cotransport, maximal doses of Ba2+ inhibited five-sixths of Isc in tissues previously stimulated to secrete Cl; only two-thirds of Isc should be sensitive to Ba2+ if NaCl cotransport is the entry mechanism. Second, we measured basolateral 86Rb uptake and demonstrated inhibition by bumetanide, an inhibitor of Na-K-2Cl cotransport in other tissues. The degree of inhibition by bumetanide was consistent with the levels of Cl secretion measured as Isc. Uptake of 86Rb was also reduced by removal of Na or Cl, and under these conditions Rb uptake was not further inhibited by bumetanide. These results suggest that the process responsible for Cl entry across the basolateral membrane of tracheal epithelium during Cl secretion is Na-K-2Cl rather than Na-Cl cotransport.


1992 ◽  
Vol 262 (6) ◽  
pp. L713-L724 ◽  
Author(s):  
M. Yamaya ◽  
W. E. Finkbeiner ◽  
S. Y. Chun ◽  
J. H. Widdicombe

Here we describe the conditions which allow cultured human tracheal epithelial cells to retain the ion transport properties and ultrastructure of the original tissue. The order of potency of growth supports and media additives in elevating baseline short-circuit current (Isc) and responses to mediators were vitrogen gel (VIT) greater than extracellular matrix from bovine corneal endothelial cells (ECM) greater than human placental collagen (HPC), and 2% Ultroser G serum substitute (USG) greater than 5% fetal calf serum (FCS) greater than defined growth factors (GF). For all combinations of medium and growth supports, an air interface (AIR) gave better electrical properties than immersion feeding (IMM). As opposed to our earlier conditions (HPC/FCS/IMM), the best new combination (VIT/USG/AIR) produced higher baseline Isc (58.0 +/- 10.6 vs. 5.1 +/- 1.0 microA/cm2) and increased Isc responses to isoproterenol (6.1 +/- 1.5 vs. 0.8 +/- 0.3 microA/cm2) and bradykinin (9.6 +/- 2.0 vs. 1.0 +/- 0.2 microA/cm2), while retaining high transepithelial resistance (227 +/- 5 omega.cm2). VIT/USG/AIR led to the appearance of cilia, an increase in the depth of the cell sheets (50 vs. 10 microns), longer and more frequent apical microvilli, and increased interdigitations of the basolateral membrane. Protein and DNA content were also significantly increased. Secretory granules were present which stained with antibody to goblet cells, but not to serous or mucous gland cells. CF cells grown in VIT/USG/AIR showed high baseline Isc (69 +/- 18 microA/cm2) and a proportionately larger inhibition of Isc by amiloride (70 +/- 10 vs. 34 +/- 3%). Isc did not respond to isoproterenol, and the response to bradykinin was 22% normal.


1983 ◽  
Vol 54 (5) ◽  
pp. 1335-1339 ◽  
Author(s):  
F. D. McCool ◽  
J. P. Zorn ◽  
M. G. Marin

We studied the effect of ethanol on the electrical and ion transport properties of dog tracheal epithelium using Ussing's short-circuit technique. There was a significant reduction of short-circuit current and electrical potential difference and a tendency of electrical resistance to increase in response to increasing concentrations of ethanol in the bathing solutions. Threshold changes in the electrical properties were noted at an ethanol concentration of 3.3 microliter/ml (260 mg/100 ml). Ethanol did not produce these changes in electrical properties when Cl- and Na+ were substituted in the bathing media with either choline or SO2-(4). In five paired tissue preparations, ethanol (13.3 microliters/ml) significantly reduced the net flux of Cl- toward the lumen from 2.68 +/- 0.62 to 1.00 +/- 0.69 (SE) mu eq X cm-2 X h-1, due primarily to a reduced unidirectional flux of Cl- from submucosa to lumen. These observations demonstrate that ethanol has an effect on the ion transport and electrical properties of dog tracheal epithelium at concentrations that may be of clinical relevance.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


1980 ◽  
Vol 239 (6) ◽  
pp. G532-G535 ◽  
Author(s):  
A. Ayalon ◽  
A. Corcia ◽  
G. Klemperer ◽  
S. R. Caplan

The effect of furosemide on acid secretion and Cl- transport was studied in isolated fundic mucosa of the guinea pig. Furosemide (10(-3) M), applied to the serosal side produced an immediate effect on the short-circuit current (Isc), lowering it by 47 +/- 2%. Potential difference decreased by 29 +/- 3%, electrical conductance by 18 +/- 4%, acid secretion by 38 +/- 1%, and net flux of Cl- from serosal-to-mucosal side by 37%. Application of the drug to the mucosal side produced similar effects on acid secretion and on the electrical parameters. It is suggested that furosemide blocks the entrance of Cl-, by the Na+--Cl- cotransport mechanism, through the basolateral membrane of the secreting cell. The consequent reduction in electrogenic Cl- transport would cause Isc and acid secretion to decrease. A reduction of Cl- conductance of the apical membrane, upon mucosal application of the drug, would cause similar effects on acid secretion and Cl- transport.


Sign in / Sign up

Export Citation Format

Share Document