Upregulation of sodium conductive pathways in alveolar type II cells in sublethal hyperoxia

1994 ◽  
Vol 266 (1) ◽  
pp. L30-L37 ◽  
Author(s):  
J. F. Haskell ◽  
G. Yue ◽  
D. J. Benos ◽  
S. Matalon

We investigated whether exposure of rats to sublethal hyperoxia (85% O2 for 7 days) raises the levels of proteins antigenically related to Na+ channels in alveolar type II (ATII) cells and, if so, whether this rise was accompanied by an increase in conductive Na+ transport in vitro. ATII cells were isolated from the lungs of these rats at the end of the exposure period. In Western blot studies, a polyclonal antibody raised against Na+ channel protein (NaAb), recognized in a specific manner a 135 +/- 10 kDa polypeptide in plasma membrane vesicles of ATII cells from both control and oxygen-exposed rats. However, higher levels of immunoreactivity were seen in ATII cells from oxygen-exposed rats. When ATII cells were patched in the whole cell mode using symmetrical solutions (150 mM Na(+)-glutamate), outward rectified Na+ currents were observed. When corrected for cell capacitance, both inward and outward currents of ATII cells from rats exposed to hyperoxia were significantly higher than control. Addition of either 1 microM amiloride or 1 microM 5-(N-ethyl-N-isopropyl)-2'-4'-amiloride in the bath solution decreased the magnitude of outward currents of both control and hyperoxic ATII cells by approximately 50%. Taken together, these results indicate that exposure of rats to sublethal hyperoxia results in upregulation of ATII cell conductive pathways with low affinity to amiloride and increased Na+ transport. This may be an early adaptive response that limits the degree of alveolar edema in injured lungs.

1993 ◽  
Vol 265 (3) ◽  
pp. C630-C640 ◽  
Author(s):  
G. Yue ◽  
P. Hu ◽  
Y. Oh ◽  
T. Jilling ◽  
R. L. Shoemaker ◽  
...  

Changes in Na+ transport in rat alveolar type II (ATII) cells during culture were quantified and related to alterations in spatial distribution of proteins antigenically related to amiloride-sensitive Na+ channels. Adult rat ATII cells were cultured for periods ranging from 24 to 96 h. When patch clamped in the whole cell mode, both freshly isolated and cultured ATII cells exhibited outwardly rectified Na+ currents. At 0 and 24 h in culture, these currents were equally inhibited by amiloride, benzamil, and 5-(N-ethyl-N-isopropyl)-2',4'-amiloride (inhibitory constant approximately 1 microM). These conductive pathways were equally permeable to Na+ and K+. Immunocytochemical localization at 0 or 24 h in culture revealed the presence of plasma membrane antigenic sites; after 48 h, the appearance of intracellular antigenic sites increased significantly. A single band of molecular mass 135 kDa in membrane proteins of freshly isolated ATII cells was recognized in Western blots; at 48 h in culture, two lower bands with molecular masses of 75 and 65 kDa were detected in either membrane or cytoplasmic proteins. Photolabeling with 2'-methoxy-5'-nitrobenzamil showed that the 135-, 75-, and 65-kDa bands contained amiloride-binding sites. These results suggest the presence of low amiloride affinity conductive pathways in freshly isolated and cultured ATII cells. Culturing ATII cells resulted in internalization and possible breakdown of these pathways and decreased Na+ transport.


1993 ◽  
Vol 264 (4) ◽  
pp. L357-L364 ◽  
Author(s):  
S. Matalon ◽  
M. L. Bauer ◽  
D. J. Benos ◽  
T. R. Kleyman ◽  
C. Lin ◽  
...  

Active Na+ transport by the alveolar epithelium plays a major role in reabsorption of the fetal lung fluid after birth. We characterized the biochemical and physiological characteristics of Na+ conductive pathways in distal fetal lung epithelial (FLE) cells isolated from 20-day-old rat fetuses. We demonstrated that a polyclonal antibody to Na+ channel protein (NaAb) binds to the plasma membranes of FLE cells. In Western blot studies, this NaAb and an anti-idiotypic monoclonal antibody to the amiloride-binding subunit of the Na+ channel protein recognized 150- and 90-kDa polypeptides in plasma membrane vesicles of FLE. 22Na+ flux measurements across plasma membrane vesicles of FLE revealed the existence of electrogenic Na+ transport, which was twice as high as the corresponding adult value. One hundred micromolars of amiloride, benzamil, and 5-(N-ethyl-N-isopropyl)-2'-4'-amiloride inhibited 30, 40, and 70% of the electrogenic Na+ transport across plasma membrane vesicles of FLE cells, respectively. The half-maximum inhibition of electrogenic Na+ transport by these substances occurred between 0.3 and 1 microM. [3H]benzamil equilibrium binding studies in membrane vesicles of FLE cells revealed the existence of two binding sites that had dissociation constant values of 19 and 1,525 nM, respectively. These data indicate the presence of both high- and low-amiloride affinity Na+ conductive pathways (channels) in FLE cells.


1991 ◽  
Vol 260 (2) ◽  
pp. L90-L96 ◽  
Author(s):  
S. Matalon ◽  
R. J. Bridges ◽  
D. J. Benos

The purpose of these studies was to document the existence of electrogenic Na+ uptake by membrane vesicles of rabbit alveolar type II (ATII) cells and the extent to which this process was inhibited by amiloride. ATII cells (greater than 85% pure) were obtained by elastase digestion of lung tissue followed by Percoll centrifugation, and an enriched plasma membrane vesicle fraction was obtained by differential centrifugation. 22Na+ uptake into these vesicles was measured in the presence of a negative inside membrane potential, produced by the addition of the K+ ionophore valinomycin (10 microM) after all external K+ was removed. Electrogenic (valinomycin-sensitive) Na+ uptake (ELNa) was defined as the difference in uptake in the presence and absence of valinomycin. ELNa, normalized per milligram protein, was twice as high across ATII cells than alveolar macrophage membrane vesicles, was inhibited by amiloride (50% inhibitory concentration = 10 microM), and was decreased in the presence of an outwardly directed proton gradient (pHin 6.8; pHout 7.8), suggesting that it was not mediated by Na(+)-H+ antiport. Furthermore, ELNa was equally inhibited by increasing concentrations of amiloride and benzamil but was more sensitive to 5-(N-ethyl-N-isopropyl)-2'-4'-amiloride in concentrations of 10–1,000 microM. These findings indicate that a fraction of Na+ transport across ATII membrane vesicles occurs through a conductive pathway, probably a channel, that has different sensitivity to amiloride and its analogues than the previously described epithelial high amiloride-affinity Na+ channel.


1998 ◽  
Vol 88 (6) ◽  
pp. 1606-1613 ◽  
Author(s):  
Serge Molliex ◽  
Bertrand Dureuil ◽  
Michel Aubier ◽  
Gerard Friedlander ◽  
Jean-Marie Desmonts ◽  
...  

Background Halothane alters surfactant biosynthesis and metabolism of alveolar type II cells. In addition to synthesizing surfactant, alveolar type II cells actively transport sodium (Na) from the alveolar space to the interstitium. Na enters the cells through amiloride-sensitive Na channels or Na cotransporters and is extruded by a Na pump. The purpose of this study was to examine the effects of halothane on Na transport activities. Methods Epithelial type II cells from adult rat lungs were exposed to halothane concentrations of 1, 2, and 4% from 0.5-4 h. In some experiments, cells that were exposed to 1% halothane for 1 h were allowed to recover after replacement of the medium for 15 and 30 min. Na transport was then evaluated by direct measurement of radiolabeled ions uptake. In addition, the effects of halothane were assessed in the absence of extracellular calcium (Ca) with or without 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, an intracellular Ca chelating agent. Results Exposure of epithelial type II cells to halothane reduced the activity of sodium, potassium-adenosine triphosphatase, and amiloride-sensitive Na channels, whereas Na cotransporters were unchanged. The decrease in sodium, potassium-adenosine triphosphatase activity was maximal for 30 min of exposure and reached 50, 42, and 56% for halothane concentrations of 1, 2, and 4%, respectively, and did not change for longer exposure times. This effect was not prevented by either the absence of extracellular Ca or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid pretreatment. Exposure for 45 min to 1% halothane also decreased Na channel activity by 46%. These effects were completely reversible after 30 min of recovery. Conclusions Sodium, potassium-adenosine triphosphatase, and amiloride-sensitive Na channel activities are impaired by halothane in alveolar type II cells in vitro. This inhibition could reduce transepithelial Na transport.


2010 ◽  
Vol 26 (6) ◽  
pp. 367-374 ◽  
Author(s):  
Tiffany M Robb ◽  
Michael J Rogers ◽  
Suann S Woodward ◽  
Simon S Wong ◽  
Mark L Witten

1998 ◽  
Vol 76 (7-8) ◽  
pp. 721-727 ◽  
Author(s):  
M W Bolt ◽  
W J Racz ◽  
J F Brien ◽  
T M Bray ◽  
T E Massey

Treatment of cardiac dysrhythmias with the iodinated benzofuran derivative amiodarone (AM) is limited by pulmonary toxicity. The susceptibilities of different lung cell types of male Golden Syrian hamsters to AM-induced cytotoxicity were investigated in vitro. Bronchoalveolar lavage and protease digestion to release cells, followed by centrifugal elutriation and density gradient centrifugation, resulted in preparations enriched with alveolar macrophages (98%), alveolar type II cells (75-85%), and nonciliated bronchiolar epithelial (Clara) cells (35-50%). Alveolar type II cell and Clara cell preparations demonstrated decreased viability (by 0.5% trypan blue dye exclusion) when incubated with 50 µM AM for 36 h, and all AM-treated cell preparations demonstrated decreased viability when incubated with 100 or 200 µM AM. Based on a viability index ((viability of AM-treated cells ÷ viability of controls) × 100%), the Clara cell fraction was significantly (p < 0.05) more susceptible than all of the other cell types to 50 µM AM. However, AM cytotoxicity was greatest (p < 0.05) in alveolar macrophages following incubation with 100 or 200 µM AM. There was no difference between any of the enriched cell preparations in the amount of drug accumulated following 24 h of incubation with 50 µM AM, whereas alveolar macrophages accumulated the most drug during incubation with 100 µM AM. Thus, the most susceptible cell type was dependent on AM concentration. AM-induced cytotoxicity in specific cell types may initiate processes leading to inflammation and pulmonary fibrosis.Key words: amiodarone, susceptibility, alveolar macrophage, accumulation.


2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document