Stimulation of both human bronchial epithelium and neutrophils is needed for maximal interactive adhesion

1996 ◽  
Vol 270 (1) ◽  
pp. L80-L87 ◽  
Author(s):  
P. G. Bloemen ◽  
M. C. Van den Tweel ◽  
P. A. Henricks ◽  
F. Engels ◽  
M. J. Van de Velde ◽  
...  

It has become clear that the bronchial epithelium is not just a passive barrier but plays an active role in inflammation. It can produce several inflammatory mediators and does express cell adhesion molecules of which intercellular adhesion molecule (ICAM)-1 can be upregulated by cytokines like interferon (IFN)-gamma. In the present study, we analyzed in detail the interaction of neutrophils with human bronchial epithelial cells, both primary cultured cells and the bronchial epithelial cell line BEAS-2B. Confluent monolayers of epithelial cells were incubated with freshly isolated 51Cr-labeled neutrophils for 30 min at 37 degrees C; then the nonadherent cells were removed by washing gently. Stimulation of the epithelial cells with IFN-gamma or the combination of IFN-gamma and tumor necrosis factor-alpha (TNF-alpha) (which doubles the ICAM-1 expression) increased neutrophil adhesion. Activation of the neutrophils themselves with N-formylmethionyl-leucyl-phenylalanine (fMLP), platelet-activating factor, or TNF-alpha also caused a profound enhancement of the adhesion. A significant additional increase was found when the epithelial cells had been exposed to IFN-gamma and the neutrophils were stimulated with fMLP simultaneously. This effect was even more pronounced with epithelium preincubated with IFN-gamma and TNF-alpha. With the use of monoclonal antibodies against CD18 and ICAM-1, it was demonstrated that the increased adhesion was mainly mediated by the ICAM-1/beta 2-integrin interaction. This study highlights that both the activation state of the bronchial epithelial cells and the activation state of the neutrophils are critical for their interactive adhesion.

1995 ◽  
Vol 268 (1) ◽  
pp. L71-L77 ◽  
Author(s):  
V. L. Kinnula ◽  
P. Pietarinen ◽  
K. Aalto ◽  
I. Virtanen ◽  
K. O. Raivio

The significance of manganese superoxide dismutase (MnSOD) induction in cells and tissues during oxidant stress is still poorly understood. In this study, transformed human bronchial epithelial cells (BEAS 2B) were treated with interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), or with combination of these cytokines (10 ng/ml concentrations) for 48 or 72 h and exposed to selected oxidants. TNF-alpha and IFN-gamma + TNF-alpha combination resulted in a marked increase of MnSOD protein and MnSOD activity. When cells pretreated with the cytokines were exposed to hyperoxia (95% O2, 72 h), menadione (5-50 microM, 4 h), or H2O2 (0.5 and 5 mM, 4 h), in all cases IFN-gamma and TNF-alpha enhanced oxidant-related cell injury. The effect was most significant with cells pretreated with a combination of IFN-gamma and TNF-alpha. Antioxidant enzymes such as total SOD, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase did not change significantly during the cytokine treatment. Catalase activity was not changed by IFN-gamma or TNF-alpha but it decreased significantly (34%) in IFN-gamma + TNF-alpha-treated cells. Free radical generation was not changed by these cytokines in acute (30 min) experimental conditions or after 48-h treatment. These results suggest that cytokine-induced MnSOD does not protect bronchial epithelial cells against endogenously or exogenously generated oxidants in vitro. In fact, cells that contained the highest MnSOD activity were the most sensitive to subsequent oxidant damage.


1998 ◽  
Vol 66 (2) ◽  
pp. 820-822 ◽  
Author(s):  
John E. Adamou ◽  
Theresa M. Wizemann ◽  
Philip Barren ◽  
Solomon Langermann

ABSTRACT Pneumococcal adherence to alveolar epithelial cells and nasopharyngeal epithelial cells has been well characterized. However, the interaction of Streptococcus pneumoniae with bronchial epithelial cells has not been studied. We have now shown that pneumococci bind specifically to a human bronchial epithelial cell line (BEAS-2B cells). Pneumococci adhered to BEAS-2B cells in a time- and dose-dependent manner. These results suggest that the bronchial epithelium may serve as an additional site of attachment for pneumococci and demonstrate the utility of the BEAS-2B cell line for studying mechanisms of pneumococcal infection.


1993 ◽  
Vol 265 (4) ◽  
pp. L360-L368 ◽  
Author(s):  
S. J. Levine ◽  
P. Larivee ◽  
C. Logun ◽  
C. W. Angus ◽  
J. H. Shelhamer

Human airway epithelial cells play an active role in modulating airway inflammation by elaborating a variety of proinflammatory molecules, including cytokines. The purpose of this study was to define the role of corticosteroids in the regulation of cytokine gene transcription and secretion by human bronchial epithelial cells. In particular, we assessed whether dexamethasone was capable of inhibiting the tumor necrosis factor-alpha (TNF-alpha)-mediated secretion of interleukin-6 (IL-6), interleukin-8 (IL-8), and granulocyte colony-stimulating factor (G-CSF) by a human bronchial epithelial cell line (BEAS-2B). Stimulation with 20 ng/ml of TNF-alpha resulted in significant increases in secretion of immunoreactive IL-6, IL-8, and G-CSF that were maximal at 24 h. TNF-alpha-mediated IL-6, IL-8, and G-CSF secretion was concentration dependent and specific. In addition, stimulation with TNF-alpha resulted in significant increases in the quantity of IL-6, IL-8, and G-CSF mRNA as detected by reverse-transcription polymerase chain reaction. Dexamethasone preconditioning significantly inhibited both the secretion of immunoreactive IL-6 and the accumulation of IL-6 mRNA. Although dexamethasone appeared to reduce both the secretion of immunoreactive IL-8 and accumulation of IL-8 mRNA, the inhibitory effects did not reach statistical significance. Finally, dexamethasone did not inhibit either the secretion of immunoreactive G-CSF or the accumulation of G-CSF mRNA. In summary, our results suggest that corticosteroids have a differential effect on the regulation of cytokine secretion by human bronchial epithelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2138 ◽  
Author(s):  
Carolien Mathyssen ◽  
Jef Serré ◽  
Annelore Sacreas ◽  
Stephanie Everaerts ◽  
Karen Maes ◽  
...  

In chronic obstructive pulmonary disease (COPD), the bronchial epithelium is the first immune barrier that is triggered by cigarette smoke. Although vitamin D (vitD) has proven anti-inflammatory and antimicrobial effects in alveolar macrophages, little is known about the direct role of vitD on cigarette smoke-exposed bronchial epithelial cells. We examined the effects of vitD on a human bronchial epithelial cell line (16HBE) and on air–liquid culture of primary bronchial epithelial cells (PBEC) of COPD patients and controls exposed for 24 h to cigarette smoke extract (CSE). VitD decreased CSE-induced IL-8 secretion by 16HBE cells, but not by PBEC. VitD significantly increased the expression of the antimicrobial peptide cathelicidin in 16HBE and PBEC of both COPD subjects and controls. VitD did not affect epithelial to mesenchymal transition or epithelial MMP-9 expression and was not able to restore impaired wound healing by CSE in 16HBE cells. VitD increased the expression of its own catabolic enzyme CYP24A1 thereby maintaining its negative feedback. In conclusion, vitD supplementation may potentially reduce infectious exacerbations in COPD by the upregulation of cathelicidin in the bronchial epithelium.


2021 ◽  
Vol 27 (3) ◽  
pp. 251-259
Author(s):  
Michael Glöckner ◽  
Sebastian Marwitz ◽  
Kristina Rohmann ◽  
Henrik Watz ◽  
Dörte Nitschkowski ◽  
...  

Non-typeable Haemophilus influenzae (NTHi) is the most common respiratory pathogen in patients with chronic obstructive disease. Limited data is available investigating the impact of NTHi infections on cellular re-differentiation processes in the bronchial mucosa. The aim of this study was to assess the effects of stimulation with NTHi on the bronchial epithelium regarding cellular re-differentiation processes using primary bronchial epithelial cells harvested from infection-free patients undergoing bronchoscopy. The cells were then cultivated using an air-liquid interface and stimulated with NTHi and TGF-β. Markers of epithelial and mesenchymal cells were analyzed using immunofluorescence, Western blot and qRT-PCR. Stimulation with both NTHi and TGF-ß led to a marked increase in the expression of the mesenchymal marker vimentin, while E-cadherin as an epithelial marker maintained a stable expression throughout the experiments. Furthermore, expression of collagen 4 and the matrix-metallopeptidases 2 and 9 were increased after stimulation, while the expression of tissue inhibitors of metallopeptidases was not affected by pathogen stimulation. In this study we show a direct pathogen-induced trans-differentiation of primary bronchial epithelial cells resulting in a co-localization of epithelial and mesenchymal markers and an up-regulation of extracellular matrix components.


1999 ◽  
Vol 277 (3) ◽  
pp. L465-L471 ◽  
Author(s):  
Alessandro Celi ◽  
Silvana Cianchetti ◽  
Stefano Petruzzelli ◽  
Stefano Carnevali ◽  
Filomena Baliva ◽  
...  

Intercellular adhesion molecule-1 (ICAM-1) is the only inducible adhesion receptor for neutrophils identified in bronchial epithelial cells. We stimulated human airway epithelial cells with various agonists to evaluate whether ICAM-1-independent adhesion mechanisms could be elicited. Phorbol 12-myristate 13-acetate (PMA) stimulation of cells of the alveolar cell line A549 caused a rapid, significant increase in neutrophil adhesion from 11 ± 3 to 49 ± 7% (SE). A significant increase from 17 ± 4 to 39 ± 6% was also observed for neutrophil adhesion to PMA-stimulated human bronchial epithelial cells in primary culture. Although ICAM-1 expression was upregulated by PMA at late time points, it was not affected at 10 min when neutrophil adhesion was already clearly enhanced. Antibodies to ICAM-1 had no effect on neutrophil adhesion. In contrast, antibodies to the leukocyte integrin β-chain CD18 totally inhibited the adhesion of neutrophils to PMA-stimulated epithelial cells. These results demonstrate that PMA stimulation of human airway epithelial cells causes an increase in neutrophil adhesion that is not dependent on ICAM-1 upregulation.


1996 ◽  
Vol 5 (3) ◽  
pp. 210-217
Author(s):  
M. M. Verheggen ◽  
H. I. M. de Bont ◽  
P. W. C. Adriaansen-Soeting ◽  
B. J. A. Goense ◽  
C. J. A. M. Tak ◽  
...  

In this study, we investigated the expression of lipocortin I and II (annexin I and I in the human bronchial epithelium, bothin vivoandin vitro. A clear expression of lipocortin I and II protein was found in the epithelium in sections of bronchial tissue. In cultured human bronchial epithelial cells we demonstrated the expression of lipocortin I and II mRNA and protein using Northern blotting, FACScan analysis and ELISA. No induction of lipocortin I or II mRNA or protein was observed after incubation with dexamethasone. Stimulation of bronchial epithelial cells with IL-1β, TNF-α or LPS for 24 h did not affect the lipocortin I or II mRNA or protein expression, although PGE2and 6-keto-PGF1αproduction was significantly increased. This IL-1β- and LPS-mediated increase in eicosanoids could be reduced by dexamethasone, but was not accompanied by an increase in lipocortin I or II expression. In human bronchial epithelial cells this particular glucocorticoid action is not mediated through lipocortin I or II induction.


1999 ◽  
Vol 277 (1) ◽  
pp. L58-L64 ◽  
Author(s):  
Ilja Striz ◽  
Tadashi Mio ◽  
Yuichi Adachi ◽  
Peggy Heires ◽  
Richard A. Robbins ◽  
...  

Interleukin (IL)-4 is thought to contribute to the Th2 type of immune response and hence the development of allergic reactions such as asthma. In asthmatic patients, the airway epithelium expresses increased amounts of the cell surface adhesion molecule intercellular adhesion molecule (ICAM)-1 (CD54). One cytokine capable of inducing ICAM-1 in airway epithelial cells, tumor necrosis factor-α (TNF-α), is present in asthma. This study evaluated if IL-4 either alone or together with TNF-α costimulation might modulate CD54 expression by human bronchial epithelial cells (HBECs). CD54 positivity increased in response to IL-4 (16 ± 2% positive vs. 3 ± 1%, P < 0.01); greater induction of CD54 resulted from TNF-α (45 ± 2%, P < 0.001). Costimulation with TNF-α plus IL-4 further augmented expression (56 ± 1%, P < 0.05). Immunoperoxidase results were confirmed by flow cytometry. RT-PCR revealed no increase in ICAM-1 mRNA expression under control conditions or after stimulation with IL-4 alone. TNF-α increased IL-4 mRNA, and IL-4 potentiated this. Functionally, IL-4 augmented the adhesion of THP-1 monocyte/macrophage cells to monolayers of HBECs both alone and in the presence of TNF-α. We conclude that 1) IL-4 augments epithelial cell ICAM-1 expression, 2) IL-4 potentiates the adhesion of THP-1 monocyte/macrophage cells to epithelial cells, and 3) modulation of epithelial cell ICAM-1 expression by IL-4 may play a role in the immunopathology of bronchial asthma.


1992 ◽  
Vol 263 (1) ◽  
pp. L79-L87 ◽  
Author(s):  
D. C. Look ◽  
S. R. Rapp ◽  
B. T. Keller ◽  
M. J. Holtzman

To evaluate the factors controlling migration of leukocytes into pulmonary airway epithelium, we determined the biochemical mechanisms responsible for the regulation of intercellular adhesion molecule-1 (ICAM-1) expression on cultured monolayers of human tracheal epithelial cells (HTECs) or SV40 virus-transformed human bronchial epithelial cells (BEAS-2B). Validation experiments with human umbilical vein endothelial cells (HUVECs) demonstrated little detectable ICAM-1 expression on unstimulated cells or on cells incubated with interferon-gamma (IFN-gamma), but HUVEC monolayers responded to interleukin-1 beta (IL-1 beta) or tumor necrosis factor-alpha (TNF-alpha) with significant increases in ICAM-1 and ICAM-1-dependent adherence of polymorphonuclear leukocytes (PMNs). HTEC monolayers also exhibited no significant basal ICAM-1 expression but, in contrast to HUVEC monolayers, had marked increases in ICAM-1 expression and ICAM-1-dependent PMN adherence only after incubation with IFN-gamma (and not after IL-1 beta or TNF-alpha) treatment. BEAS-2B cells also exhibited relatively selective IFN-gamma stimulation of ICAM-1 expression and ICAM-1-dependent PMN adherence but (like late passage HTEC) showed significant basal ICAM-1 expression. Differences in IFN-gamma effect on ICAM-1 levels between HUVEC and HTEC monolayers were not due to differences in number or responsiveness of IFN-gamma receptors, because both cell types exhibited a similar number of receptors and other IFN-gamma-dependent responses of HUVECs remained active. In all analyses, ICAM-1 mRNA levels correlated closely with detection of ICAM-1 on the cell surface.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document