Prostanoids mediate IL-1β-induced β-adrenergic hyporesponsiveness in human airway smooth muscle cells

1998 ◽  
Vol 275 (3) ◽  
pp. L491-L501 ◽  
Author(s):  
Johanne D. Laporte ◽  
Paul E. Moore ◽  
Reynold A. Panettieri ◽  
Winfried Moeller ◽  
Joachim Heyder ◽  
...  

We have previously reported that pretreatment of cultured human airway smooth muscle (HASM) cells with interleukin-1β (IL-1β) results in decreased β-adrenergic responsiveness. The purpose of this study was to determine whether prostanoids released as a result of cyclooxygenase-2 (COX-2) induction by IL-1β contribute to this effect of the cytokine. Confluent serum-deprived HASM cells were studied in passages 4–7. IL-1β (20 ng/ml for 22 h) reduced the ability of the β-agonist isoproterenol (Iso) to decrease stiffness of HASM cells as measured by magnetic twisting cytometry. The effect of IL-1β on Iso-induced changes in cell stiffness was abolished by nonselective [indomethacin (Indo), 10−6 M] and selective (NS-398, 10−5 M) COX-2 inhibitors. Indo and NS-398 also inhibited both the increased basal cAMP and the decreases in Iso-stimulated cAMP production induced by IL-1β. IL-1β (20 ng/ml for 22 h) caused an increase in both basal (15-fold) and arachidonic acid (AA)-stimulated (10-fold) PGE2 release. Indo blocked basal and AA-stimulated PGE2 release in both control and IL-1β-treated cells. NS-398 also markedly reduced basal and AA-stimulated PGE2release in IL-1β-treated cells but had no significant effect on AA-stimulated PGE2 release in control cells. Western blot analysis confirmed the induction of COX-2 by IL-1β. Exogenously administered PGE2(10−7 M, 22 h) caused a significant reduction in the ability of Iso to decrease cell stiffness, mimicking the effects of IL-1β. Cycloheximide (10 μg/ml for 24 h), an inhibitor of protein synthesis, also abolished the effects of IL-1β on Iso-induced cell stiffness changes and cAMP formation. In summary, our results indicate that IL-1β significantly increases prostanoid release by HASM cells as a result of increased COX-2 expression. The prostanoids appear to contribute to β-adrenergic hyporesponsiveness, perhaps by heterologous desensitization of the β2 receptor.

2001 ◽  
Vol 280 (6) ◽  
pp. L1225-L1232 ◽  
Author(s):  
Thomas Lahiri ◽  
Johanne D. Laporte ◽  
Paul E. Moore ◽  
Reynold A. Panettieri ◽  
Stephanie A. Shore

Interleukin (IL)-1β induces cyclooxygenase (COX)-2 expression and prostanoid formation in cultured human airway smooth muscle (HASM) cells. In other cell types, IL-6 family cytokines induce COX-2 or augment IL-1β-induced COX-2 expression. The purpose of this study was to determine whether IL-6 family cytokines were involved in COX-2 expression in HASM cells. RT-PCR was used to demonstrate that the necessary receptor components for IL-6-type cytokine binding are expressed in HASM cells. IL-6 and oncostatin M (OSM) each caused a dose-dependent phosphorylation of signal transducer and activator of transcription-3, whereas IL-11 did not. IL-6, IL-11, and OSM alone had no effect on COX-2 expression. However, OSM caused dose-dependent augmentation of COX-2 expression and prostaglandin (PG) E2release induced by IL-1β. In contrast, IL-6 and IL-11 did not alter IL-1β-induced COX-2 expression. IL-6 did increase IL-1β-induced PGE2formation in unstimulated cells but not in cells stimulated with arachidonic acid (AA; 10−5M), suggesting that IL-6 effects were mediated at the level of AA release. Our results indicate that IL-6 and OSM are capable of inducing signaling in HASM cells. In addition, OSM and IL-1β synergistically cause COX-2 expression and PGE2release.


2001 ◽  
Vol 91 (2) ◽  
pp. 986-994 ◽  
Author(s):  
Ben Fabry ◽  
Geoffrey N. Maksym ◽  
Stephanie A. Shore ◽  
Paul E. Moore ◽  
Reynold A. Panettieri ◽  
...  

We measured the time course and heterogeneity of responses to contractile and relaxing agonists in individual human airway smooth muscle (HASM) cells in culture. To this end, we developed a microrheometer based on magnetic twisting cytometry adapted with a novel optical detection system. Ferromagnetic beads (4.5 μm) coated with Arg-Gly-Asp peptide were bound to integrins on the cell surface. The beads were twisted in a sinusoidally varying magnetic field at 0.75 Hz. Oscillatory bead displacements were recorded using a phase-synchronized video camera. The storage modulus (cell stiffness; G′), loss modulus (friction; G"), and hysteresivity (η; ratio of G" to G′) could be determined with a time resolution of 1.3 s. Within 5 s after addition of histamine (100 μM), G′ increased by 2.2-fold, G" increased by 3.0-fold, and η increased transiently from 0.27 to 0.34. By 20 s, η decreased to 0.25, whereas G′ and G" remained above baseline. Comparable results were obtained with bradykinin (1 μM). These changes in G′, G", and η measured in cells were similar to but smaller than those reported for intact muscle strips. When we ablated baseline tone by adding the relaxing agonist dibutyryl cAMP (1 mM), G′ decreased within 5 min by 3.3-fold. With relaxing and contracting agonists, G′ could be manipulated through a contractile range of 7.3-fold. Cell populations exhibited a log-normal distribution of baseline stiffness (geometric SD = 2.8) and a heterogeneous response to both contractile and relaxing agonists, partly attributable to variability of baseline tone between cells. The total contractile range of the cells (from maximally relaxed to maximally stimulated), however, was independent of baseline stiffness. We conclude that HASM cells in culture exhibit a clear, although heterogeneous, response to contractile and relaxing agonists and express the essential mechanical features characteristic of the contractile response observed at the tissue level.


2000 ◽  
Vol 279 (1) ◽  
pp. L201-L207 ◽  
Author(s):  
Choong Yi Fong ◽  
Linhua Pang ◽  
Elaine Holland ◽  
Alan J. Knox

We have recently shown that endogenous prostanoids are critical in bradykinin-stimulated interleukin (IL)-8 release from human airway smooth muscle (ASM) cells. In this study, we tested the ability of transforming growth factor (TGF)-β1 to stimulate IL-8 release, cyclooxygenase (COX)-2 expression and PGE2 generation in cultured human ASM cells and explored the role of COX products and COX-2 induction on IL-8 release. TGF-β1 stimulated IL-8 release, COX-2 induction, and PGE2 generation in a concentration- and time-dependent manner. Maximal IL-8 release was achieved with 10 ng/ml of TGF-β1 after 16 h of incubation, which was inhibited by the transcription inhibitor actinomycin D and the corticosteroid dexamethasone but was not affected by the nonselective COX inhibitor indomethacin and the selective COX-2 inhibitor NS-398 despite their inhibition on TGF-β1-induced PGE2 release. These results show for the first time that TGF-β1 stimulates IL-8 release, COX-2 induction, and PGE2 generation in human ASM cells and that PGE2 generation is not critical for TGF-β1-induced IL-8 release. These findings suggest that TGF-β1 may play an important role in the pathophysiology of asthma.


1996 ◽  
Vol 271 (5) ◽  
pp. C1660-C1668 ◽  
Author(s):  
R. D. Hubmayr ◽  
S. A. Shore ◽  
J. J. Fredberg ◽  
E. Planus ◽  
R. A. Panettieri ◽  
...  

Using magnetic twisting cytometry (MTC), we measured the cytoskeletal stiffness of adherent human airway smooth muscle (HASM) cells. We hypothesized that modulation of actin-myosin interactions by application of contractile agonists would induce changes in cytoskeletal stiffness. In cells plated on high-density collagen, bradykinin (10(-6) M) and histamine (10(-4) M) increased stiffness by 85 +/- 15 and 68 +/- 16%, respectively. Increases in cell stiffness were also consistently observed after acetylcholine, substance P, and KCl. The bronchodilator agonists isoproterenol, prostaglandin E2, forskolin, dibutryl adenosine 3', 5'-cyclic monophosphate, and 8-bromoguanosine 3', 5'-cyclic monophosphate each caused a dose-dependent decrease in cell stiffness in unstimulated as well as bradykinin-treated cells. HASM cells plated on high-density collagen were stiffer than cells plated on low-density collagen (126 +/- 16 vs. 43 +/- 3 dyn/cm2) and developed more pronounced increases in stiffness in response to bradykinin as well as more pronounced decreases in stiffness in response to isoproterenol. These results are consistent with the hypothesis that modulation of actin-myosin interactions by application of contractile agonists causes changes in cytoskeletal stiffness of HASM cells. MTC may be a valuable tool for evaluating the mechanisms of pharmacomechanical coupling in airway smooth muscle cells in culture.


Author(s):  
Yue Wang ◽  
Yifan Zhang ◽  
Ming Zhang ◽  
Jingjing Li ◽  
Yan Pan ◽  
...  

Airway hyperresponsiveness (AHR) is one of the main pathologic features of bronchial asthma, which is largely attributable to enhanced contractile response of asthmatic airway smooth muscle. Although β2 adrenergic receptor agonists are commonly used to relax airway smooth muscle for treating AHR, there are side effects such as desensitization of long-term use. Therefore, it is desirable to develop alternative relaxant for airway smooth muscle, preferably based on natural products. One potential candidate is the inexpensive and widely available natural herb saponins of Dioscorea nipponicae (SDN), which has recently been reported to suppress the level of inflammatory factor IL-17A in ovalbumin-induced mice, thereby alleviating the inflammation symptoms of asthma. Here, we evaluated the biomechanical effect of SDN on IL-17A-mediated changes of cultured human airway smooth muscle cells (HASMCs) in vitro. The stiffness and traction force of the cells were measured by optical magnetic twisting cytometry (OMTC), and Fourier transform traction microscopy (FTTM), respectively. The cell proliferation was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetry, the cell migration was measured by cell scratch test, and the changes of cell cytoskeleton were assessed by laser confocal microscopy. We found that the stiffness and traction force of HASMCs were enhanced along with the increases of IL-17A concentration and exposure time, and SDN treatment dose-dependently reduced these IL-17A-induced changes in cell mechanical properties. Furthermore, SDN alleviated IL-17A-mediated effects on HASMCs proliferation, migration, and cytoskeleton remodeling. These results demonstrate that SDN could potentially be a novel drug candidate as bronchodilator for treating asthma-associated AHR.


1999 ◽  
Vol 277 (5) ◽  
pp. L943-L951 ◽  
Author(s):  
Johanne D. Laporte ◽  
Paul E. Moore ◽  
Joseph H. Abraham ◽  
Geoffrey N. Maksym ◽  
Ben Fabry ◽  
...  

We have previously reported that interleukin (IL)-1β causes β-adrenergic hyporesponsiveness in cultured human airway smooth muscle cells by increasing cyclooxygenase-2 (COX-2) expression and prostanoid formation. The purpose of this study was to determine whether extracellular signal-regulated kinases (ERKs) are involved in these events. Levels of phosphorylated ERK (p42 and p44) increased 8.3- and 13-fold, respectively, 15 min after treatment with IL-1β (20 ng/ml) alone. Pretreating cells with the mitogen-activated protein kinase kinase inhibitor PD-98059 or U-126 (2 h before IL-1β treatment) decreased ERK phosphorylation. IL-1β (20 ng/ml for 22 h) alone caused a marked induction of COX-2 and increased basal PGE2 release 28-fold ( P < 0.001). PD-98059 (100 μM) and U-126 (10 μM) each decreased COX-2 expression when administered before IL-1β treatment. In control cells, PD-98059 and U-126 had no effect on basal or arachidonic acid (AA; 10 μM)-stimulated PGE2 release, but both inhibitors caused a significant decrease in bradykinin (BK; 1 μM)-stimulated PGE2 release, consistent with a role for ERK in the activation of phospholipase A2 by BK. In IL-1β-treated cells, prior administration of PD-98059 caused 81, 92 and 40% decreases in basal and BK- and AA-stimulated PGE2 release, respectively ( P < 0.01), whereas administration of PD-98059 20 h after IL-1β resulted in only 38 and 43% decreases in basal and BK-stimulated PGE2release, respectively ( P < 0.02) and had no effect on AA-stimulated PGE2 release. IL-1β attenuated isoproterenol-induced decreases in human airway smooth muscle stiffness as measured by magnetic twisting cytometry, and PD-98059 or U-126 abolished this effect in a concentration-dependent manner. These results are consistent with the hypothesis that ERKs are involved early in the signal transduction pathway through which IL-1β induces PGE2 synthesis and β-adrenergic hyporesponsiveness and that ERKs act by inducing COX-2 and activating phospholipase A2.


1998 ◽  
Vol 275 (2) ◽  
pp. L322-L329 ◽  
Author(s):  
Linhua Pang ◽  
Elaine Holland ◽  
Alan J. Knox

Interleukin (IL)-1β impairs human airway smooth muscle (ASM) cell cAMP responses to isoproterenol (Iso). We investigated if bradykinin (BK) could cause a similar effect and the role of cyclooxygenase (COX) products in this event, since we have recently reported that BK, like IL-1β, also causes COX-2 induction and prostanoid release in human ASM cells. BK pretreatment significantly attenuated Iso-induced cAMP generation in a time- and concentration-dependent manner. cAMP generation by prostaglandin (PG) E2but not by forskolin was also impaired. The COX inhibitor indomethacin completely prevented the impairment, whereas the selective COX-2 inhibitors NS-398 and nimesulide, protein synthesis inhibitors cycloheximide and actinomycin D, and steroid dexamethasone were all partially effective. The impairment was mimicked by the B2agonist [Tyr(Me)8]BK, the Ca2+ionophore A-23187, and PGE2and prevented by the B2antagonist HOE-140, but anti-IL-1β serum was ineffective. The results indicate that BK impairs human ASM cell responses to Iso, and the effect is largely mediated by B2receptor-related COX product release via both COX isoforms and is independent of IL-1β.


2014 ◽  
Vol 307 (9) ◽  
pp. L727-L734 ◽  
Author(s):  
Brian S. Comer ◽  
Blanca Camoretti-Mercado ◽  
Paul C. Kogut ◽  
Andrew J. Halayko ◽  
Julian Solway ◽  
...  

MicroRNA (miR)-146a and miR-146b are negative regulators of inflammatory gene expression in lung fibroblasts, epithelial cells, monocytes, and endothelial cells. The abundance of cyclooxygenase-2 (COX-2) and IL-1β is negatively regulated by the miR-146 family, suggesting miR-146a and/or miR-146b might modulate inflammatory mediator expression in airway smooth muscle thereby contributing to pathogenesis of asthma. To test this idea we compared miR-146a and miR-146b expression in human airway smooth muscle cells (hASMCs) from nonasthmatic and asthmatic subjects treated with cytomix (IL-1β, TNF-α, and IFNγ) and examined the miRNAs' effects on COX-2 and IL-1β expression. We found that cytomix treatment elevated miR-146a and miR-146b abundance. Induction with cytomix was greater than induction with individual cytokines, and asthmatic cells exhibited higher levels of miR-146a expression following cytomix treatment than nonasthmatic cells. Transfection of miR-146a or miR-146b mimics reduced COX-2 and IL-1β expression. A miR-146a inhibitor increased COX-2 and IL-1β expression, but a miR-146b inhibitor was ineffective. Repression of COX-2 and IL-1β expression by miR-146a correlated with reduced abundance of the RNA-binding protein human antigen R. These results demonstrate that miR-146a and miR-146b expression is inducible in hASMCs by proinflammatory cytokines and that miR-146a expression is greater in asthmatic cells. Both miR-146a and miR-146b can negatively regulate COX-2 and IL-1β expression at pharmacological levels, but loss-of-function studies showed that only miR-146a is an endogenous negative regulator in hASMCs. The results suggest miR-146 mimics may be an attractive candidate for further preclinical studies as an anti-inflammatory treatment of asthma.


1997 ◽  
Vol 273 (6) ◽  
pp. L1132-L1140 ◽  
Author(s):  
Linhua Pang ◽  
Alan J. Knox

Prostanoids may be involved in bradykinin (BK)-induced bronchoconstriction in asthma. We investigated whether cyclooxygenase (COX)-2 induction was involved in prostaglandin (PG) E2 release by BK in cultured human airway smooth muscle (ASM) cells and analyzed the BK receptor subtypes responsible. BK stimulated PGE2release, COX activity, and COX-2 induction in a concentration- and time-dependent manner. It also time dependently enhanced arachidonic acid release. In short-term (15-min) experiments, BK stimulated PGE2 generation but did not increase COX activity or induce COX-2. In long-term (4-h) experiments, BK enhanced PGE2 release and COX activity and induced COX-2. The long-term responses were inhibited by the protein synthesis inhibitors cycloheximide and actinomycin D and the steroid dexamethasone. The effects of BK were mimicked by the B2-receptor agonist [Tyr(Me)8]BK, whereas the B1 agonist des-Arg9-BK was weakly effective at high concentrations. The B2antagonist HOE-140 potently inhibited all the effects, but the B1 antagonist des-Arg9,(Leu8)-BK was inactive. This study is the first to demonstrate that BK can induce COX-2. Conversion of increased arachidonic acid release to PGE2 by COX-1 is mainly involved in the short-term effect, whereas B2 receptor-related COX-2 induction is important in the long-term PGE2 release.


Sign in / Sign up

Export Citation Format

Share Document