EETs relax airway smooth muscle via an EpDHF effect: BKCa channel activation and hyperpolarization

2001 ◽  
Vol 280 (5) ◽  
pp. L965-L973 ◽  
Author(s):  
Catherine Benoit ◽  
Barbara Renaudon ◽  
Dany Salvail ◽  
Eric Rousseau

Epoxyeicosatrienoic acids (EETs) are produced from arachidonic acid via the cytochrome P-450 epoxygenase pathway. EETs are able to modulate smooth muscle tone by increasing K+ conductance, hence generating hyperpolarization of the tissues. However, the molecular mechanisms by which EETs induce smooth muscle relaxation are not fully understood. In the present study, the effects of EETs on airway smooth muscle (ASM) were investigated using three electrophysiological techniques. 8,9-EET and 14,15-EET induced concentration-dependent relaxations of the ASM precontracted with a muscarinc agonist (carbamylcholine chloride), and these relaxations were partly inhibited by 10 nM iberiotoxin (IbTX), a specific large-conductance Ca2+-activated K+ (BKCa) channel blocker. Moreover, 3 μM 8,9- or 14,15-EET induced hyperpolarizations of −12 ± 3.5 and −16 ± 3 mV, with EC50 values of 0.13 and 0.14 μM, respectively, which were either reversed or blocked on addition of 10 nM IbTX. These results indicate that BKCa channels are involved in hyperpolarization and participate in the relaxation of ASM. In addition, complementary experiments demonstrated that 8,9- and 14,15-EET activate reconstituted BKCa channels at low free Ca2+ concentrations without affecting their unitary conductance. These increases in channel activity were IbTX sensitive and correlated well with the IbTX-sensitive hyperpolarization and relaxation of ASM. Together these results support the view that, in ASM, the EETs act through an epithelium-derived hyperpolarizing factorlike effect.

1992 ◽  
Vol 262 (2) ◽  
pp. L119-L139 ◽  
Author(s):  
C. M. Schramm ◽  
M. M. Grunstein

Agonist-receptor interactions regulate airway smooth muscle tone through activation of guanine nucleotide binding proteins (G proteins) which are coupled to second-messenger pathways that mediate changes in the tissue's contractile state. Various methods have been applied to identify the structure/function characteristics of G proteins and their role in signal transduction in airway smooth muscle, including the use of exotoxins, nonhydrolyzable analogs of guanosine-triphosphate (GTP), antibodies to purified G proteins, and membrane reconstitution studies. In elucidating mechanisms of airway smooth muscle relaxation, considerable progress has been made in identifying the molecular basis for receptor/G protein coupling and other regulatory processes leading to both the activation and down-regulation of the adenylate cyclase/adenosine 3' 5'-cyclic monophosphate system. Further, with respect to airway smooth muscle contraction, various approaches have been used to evaluate the role of membrane phosphoinositide turnover and the mechanisms of action of the bifurcating signal transduction pathways associated with the production and metabolism of inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, and activation of protein kinase C. This review identifies much of the information gained to date on the above signal transduction pathways, with an emphasis placed on various methodological approaches used to determine membrane and transmembrane signaling processes in airway smooth muscle.


2000 ◽  
Vol 279 (4) ◽  
pp. L716-L721 ◽  
Author(s):  
Kezhong Fang ◽  
Roger Johns ◽  
Timothy Macdonald ◽  
Michael Kinter ◽  
Benjamin Gaston

Airway levels of the endogenous bronchodilator S-nitrosoglutathione (GSNO) are low in children with near-fatal asthma. We hypothesized that GSNO could be broken down in the lung and that this catabolism could inhibit airway smooth muscle relaxation. In our experiments, GSNO was broken down by guinea pig lung homogenates, particularly after ovalbumin sensitization (OS). Two lung protein fractions had catabolic activity. One was NADPH dependent and was more active after OS. The other was NADPH independent and was partially inhibited by aurothioglucose. Guinea pig lung tissue protein fractions with GSNO catabolic activity inhibited GSNO-mediated guinea pig tracheal ring relaxation. The relaxant effect of GSNO was partially restored by aurothioglucose. These observations suggest that catabolism of GSNO in the guinea pig 1) is mediated by lung proteins, 2) is partially upregulated after OS, and 3) may contribute to increased airway smooth muscle tone. We speculate that enzymatic breakdown of GSNO in the lung could contribute to asthma pathophysiology by inhibiting the beneficial effects of GSNO, including its effect on airway smooth muscle tone.


2002 ◽  
Vol 93 (2) ◽  
pp. 440-449 ◽  
Author(s):  
Musa A. Haxhiu ◽  
Bryan K. Yamamoto ◽  
Ismail A. Dreshaj ◽  
Donald G. Ferguson

In this study, we examined effects of chemical stimulation of the ventrolateral region of the midbrain periaqueductal gray (vl PAG) on airway smooth muscle tone. We observed that in anesthetized, paralyzed, and artificially ventilated ferrets, vl PAG stimulation elicited airway smooth muscle relaxation. To clarify the mechanisms underlying this observation, we examined the GABA-GABAA receptor signaling pathway by 1) examining the expression of GABAA receptors on airway-related vagal preganglionic neurons (AVPNs) located in the rostral nucleus ambiguus region (rNA), by use of receptor immunochemistry and confocal microscopy; 2) measuring GABA release within the rNA by using microdialysis; and 3) performing physiological experiments to determine the effects of selective blockade of GABAA receptors expressed by AVPNs in the rNA region on vl PAG-induced airway relaxation, thereby defining the role of the GABAA receptor subtype in this process. We observed that AVPNs located in the rNA region do express the GABAA receptor β-subtype. In addition, we demonstrated that activation of vl PAG induced GABA release within the rNA region, and this release was associated with airway smooth muscle relaxation. Blockade of the GABAA receptor subtype expressed by AVPNs in the rNA by bicuculline diminished the inhibitory effects of vl PAG stimulation on airway smooth muscle tone. These data indicate, for the first time, that activation of vl PAG dilates the airways by a release of GABA and activation of GABAA receptors expressed by AVPNs.


2003 ◽  
Vol 94 (5) ◽  
pp. 1999-2009 ◽  
Author(s):  
Musa A. Haxhiu ◽  
Prabha Kc ◽  
Burim Neziri ◽  
Bryan K. Yamamoto ◽  
Donald G. Ferguson ◽  
...  

In this study, we have investigated the ultrastructure and function of the catecholaminergic circuitry modulating the output of airway-related vagal preganglionic neurons (AVPNs) in ferrets. Immunoelectron microscopy was employed to characterize the nature of catecholaminergic innervation of AVPN at the ultrastructural level. In addition, immunofluorescence was used to examine the expression of the α2A-adrenergic receptor (α2A-AR) on AVPNs, and norepinephrine release within the rostral nucleus ambiguous (rNA) was measured by using microdialysis. Physiological experiments were performed to determine the effects of stimulation of the noradrenergic locus coeruleus (LC) cell group on airway smooth muscle tone. The results showed that 1) catecholaminergic nerve endings terminate in the vicinity of identified AVPNs but very rarely form axosomatic or axodendritic synapses with the AVPNs that innervate the extrathoracic trachea; 2) AVPNs express the α2A-AR; 3) LC stimulation-induced norepinephrine release within the rNA region was associated with airway smooth muscle relaxation; and 4) blockade of α2A-AR on AVPNs diminished the inhibitory effects of LC stimulation on airway smooth muscle tone. It is concluded that a noradrenergic circuit originating within the LC is involved in the regulation of AVPN activity within the rNA, and stimulation of the LC dilates the airways by the release of norepinephrine and activation of α2A-AR expressed by AVPNs, mainly via volume transmission.


1989 ◽  
Vol 257 (4) ◽  
pp. H1315-H1320
Author(s):  
J. L. Mehta ◽  
D. L. Lawson ◽  
W. W. Nichols ◽  
P. Mehta

To determine the influence of polymorphonuclear leukocytes (PMNLs) on vascular smooth muscle tone, isolated human PMNLs (10(4)–10(7) cells/ml) were suspended in a tissue bath with precontracted rat aortic rings with or without endothelium. PMNLs in low concentrations (10(4) and 10(5) cells/ml) caused a mild contraction, and in higher concentrations (10(6) and 10(7) cells/ml) caused a modest relaxation of aortic rings with intact endothelium. In contrast, PMNLs caused a potent concentration-dependent relaxation of deendothelialized rings (P less than 0.01 compared with rings with intact endothelium). The PMNL-induced vascular smooth muscle relaxation was abolished by both hemoglobin and methylene blue and potentiated by both superoxide dismutase and captopril. Although suspension of PMNLs caused release of eicosanoids, thromboxane A2 and prostacyclin, from rings with intact endothelium, neither indomethacin nor the TxA2-endoperoxide receptor antagonist SQ 29548 modified the effects of PMNLs on vascular smooth muscle tone. These observations suggest that unstimulated PMNLs generate a smooth muscle relaxant, which has biological characteristics similar to the endothelium-derived relaxing factor. Since the activity of this PMNL-derived smooth muscle relaxant is more pronounced in deendothelialized vascular segments, it appears that endothelium provides a barrier against vasorelaxation by high concentrations of PMNLs.


2004 ◽  
Vol 286 (3) ◽  
pp. H1043-H1056 ◽  
Author(s):  
Nikolaos M. Tsoukias ◽  
Mahendra Kavdia ◽  
Aleksander S. Popel

Nitric oxide (NO) plays many important physiological roles, including the regulation of vascular smooth muscle tone. In response to hemodynamic or agonist stimuli, endothelial cells produce NO, which can diffuse to smooth muscle where it activates soluble guanylate cyclase (sGC), leading to cGMP formation and smooth muscle relaxation. The close proximity of red blood cells suggests, however, that a significant amount of NO released will be scavenged by blood, and thus the issue of bioavailability of endothelium-derived NO to smooth muscle has been investigated experimentally and theoretically. We formulated a mathematical model for NO transport in an arteriole to test the hypothesis that transient, burst-like NO production can facilitate efficient NO delivery to smooth muscle and reduce NO scavenging by blood. The model simulations predict that 1) the endothelium can maintain a physiologically significant amount of NO in smooth muscle despite the presence of NO scavengers such as hemoglobin and myoglobin; 2) under certain conditions, transient NO release presents a more efficient way for activating sGC and it can increase cGMP formation severalfold; and 3) frequency-rather than amplitude-dependent control of cGMP formation is possible. This suggests that it is the frequency of NO bursts and perhaps the frequency of Ca2+ oscillations in endothelial cells that may limit cGMP formation and regulate vascular tone. The proposed hypothesis suggests a new functional role for Ca2+ oscillations in endothelial cells. Further experimentation is needed to test whether and under what conditions in silico predictions occur in vivo.


2021 ◽  
Vol 64 (1) ◽  
pp. 59-68
Author(s):  
Amy D. Wu ◽  
William Dan ◽  
Yi Zhang ◽  
Shruti Vemaraju ◽  
Brian A. Upton ◽  
...  

1995 ◽  
Vol 268 (6) ◽  
pp. L935-L940 ◽  
Author(s):  
C. W. Emala ◽  
A. Aryana ◽  
M. A. Levine ◽  
R. P. Yasuda ◽  
S. A. Satkus ◽  
...  

Airway smooth muscle from asthmatic humans and from the Basenji-greyhound dog (BG) dog is hyporesponsive to beta-adrenergic agonist stimulation. Because adenylyl cyclase is under dual regulation in airway smooth muscle, we compared muscarinic receptor-coupled inhibition of adenylyl cyclase in airway smooth muscle from BG and mongrel dogs. Inhibition of forskolin-stimulated adenylyl cyclase activity by the muscarinic M2 agonist oxotremorine was greater in airway smooth muscle membranes from BG compared with mongrel controls. Quantitative immunoprecipitation studies showed increased numbers of m2 but not m3 muscarinic receptors in the BG airway smooth muscle. The enhanced ability of muscarinic agonists to inhibit adenylyl cyclase in BG airway smooth muscle may be due to the greater numbers of muscarinic m2 receptors, which may account in part for impaired airway smooth muscle relaxation in the BG model of airway hyperresponsiveness.


2001 ◽  
Vol 280 (6) ◽  
pp. G1341-G1350 ◽  
Author(s):  
Sushanta Chakder ◽  
D. N. K. Sarma ◽  
Satish Rattan

We investigated the mechanism of the inhibitory action of phorbol 12,13-dibutyrate (PDBu), one of the typical protein kinase C (PKC) activators, in in vitro smooth muscle strips and in isolated smooth muscle cells of the opossum internal anal sphincter (IAS). The inhibitory action of PDBu on IAS smooth muscle (observed in the presence of guanethidine + atropine) was partly attenuated by tetrodotoxin, suggesting that a part of the inhibitory action of PDBu is via the nonadrenergic, noncholinergic neurons. A major part of the action of PDBu in IAS smooth muscle was, however, via its direct action at the smooth muscle cells, accompanied by a decrease in free intracellular Ca2+ concentration ([Ca2+]i) and inhibition of PKC translocation. PDBu-induced IAS smooth muscle relaxation was unaffected by agents that block Ca2+ mobilization and Na+-K+-ATPase. The PDBu-induced fall in basal IAS smooth muscle tone and [Ca2+]i resembled that induced by the Ca2+ channel blocker nifedipine and were reversed specifically by the Ca2+ channel activator BAY K 8644. We speculate that a major component of the relaxant action of PDBu in IAS smooth muscle is caused by the inhibition of Ca2+ influx and of PKC translocation to the membrane. The specific role of PKC downregulation and other factors in the phorbol ester-mediated fall in basal IAS smooth muscle tone remain to be determined.


Sign in / Sign up

Export Citation Format

Share Document