scholarly journals Hypothalamic action of phoenixin to control reproductive hormone secretion in females: importance of the orphan G protein-coupled receptor Gpr173

2016 ◽  
Vol 311 (3) ◽  
pp. R489-R496 ◽  
Author(s):  
Lauren M. Stein ◽  
Chloe W. Tullock ◽  
Stacy K. Mathews ◽  
David Garcia-Galiano ◽  
Carol F. Elias ◽  
...  

Sexual maturation and maintenance of reproductive function are regulated by neurohormonal communication between the hypothalamus, pituitary, and gonads (referred to as the HPG axis). Phoenixin (PNX) is a newly identified, endogenous peptide abundantly produced in the hypothalamus and shown to be an important mediator of ovarian cyclicity. However, the underlying mechanisms by which phoenixin functions within the HPG axis are unknown. Previous in vitro studies demonstrated a direct action of PNX on gonadotrophs to potentiate gonadotrophin-releasing hormone (GnRH) induced luteinizing hormone (LH) secretion. Therefore, we hypothesized that centrally derived phoenixin regulates the preovulatory LH surge required for ovarian cyclicity. We observed a significant dose-related increase in the level of plasma LH in diestrous, female rats that were given an intracerebroventricular injection of PNX compared with vehicle-treated controls. While this suggests that even under low-estrogen conditions, PNX acts centrally to stimulate the HPG axis, further characterization is contingent on the elucidation of its cognate receptor. Using the “deductive ligand receptor matching strategy,” we identified the orphan G protein-coupled receptor, Gpr173, as our top candidate. In cultured pituitary cells, siRNA-targeted compromise of Gpr173 abrogated PNX's action to potentiate GnRH-stimulated LH secretion. In addition, siRNA-mediated knockdown of endogenous Gpr173, which localized to several hypothalamic sites related to reproductive function, not only significantly extended the estrous cycle but also prevented the PNX-induced LH secretion in diestrous, female rats. These studies are the first to demonstrate a functional relationship between PNX and Gpr173 in reproductive physiology and identify a potential therapeutic target for ovulatory dysfunction.

1999 ◽  
Vol 161 (3) ◽  
pp. 375-382 ◽  
Author(s):  
S Miyamoto ◽  
M Irahara ◽  
K Ushigoe ◽  
A Kuwahara ◽  
H Sugino ◽  
...  

We investigated the effect of activin A on secretion of LH, FSH, and prolactin (PRL) by female cultured rat pituitary cells at the single-cell level by means of the cell immunoblot assay. Anterior pituitary cells from 8-week-old female rats were preincubated with or without activin A for 24 h, after which they were monodispersed and immediately used for cell immunoblot assay. The percentages of LH-, FSH- and PRL-immunoreactive cell blots detected were 5.5, 5.3 and 43.1%, respectively, of all pituitary cells applied to the transfer membrane. The percentage of LH-secreting cells and mean LH secretion per cell did not change after treatment with activin. In contrast, activin significantly increased the percentage of FSH-secreting cells and mean FSH secretion per cell to 136.0 and 114. 5% respectively. In addition, activin significantly decreased the percentage of PRL-secreting cells and mean PRL secretion per cell to 52.2 and 72.0% respectively. These results suggest that (1) activin A has effects on female rat pituitary cells that increase not only the amount of FSH secretion per cell but also the number of FSH-secreting cells, and (2) activin A decreases both the amount of PRL secretion per cell and the number of PRL-secreting cells.


Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 1007-1013 ◽  
Author(s):  
Tony M. Plant ◽  
Suresh Ramaswamy ◽  
Meloni J. DiPietro

The purpose of the present study was to further examine the hypothesis that activation of G protein-coupled receptor 54 (GPR54) signaling at the end of the juvenile phase of primate development is responsible for initiation of gonadarche and the onset of puberty. Accordingly, we determined whether repetitive iv administration of the GPR54 receptor agonist kisspeptin-10 (2 μg as a brief 1-min infusion once every hour for 48 h) to the juvenile male rhesus monkey would prematurely elicit sustained, pulsatile release of hypothalamic GnRH, the neuroendocrine trigger for gonadarche. GnRH release was monitored indirectly by measuring LH secretion from the in situ pituitary, the GnRH responsiveness of which had been heightened before the experiment with an intermittent iv infusion of synthetic GnRH. Agonadal animals (n = 4) were employed to eliminate any confounding and secondary effects of changing feedback signals from the testis. The first brief infusion of kisspeptin-10 evoked an LH discharge that mimicked those produced by GnRH priming, and this was followed by a train of similar LH discharges in response to hourly activation of GPR54 by repetitive kisspeptin-10 administration. Concomitant treatment with a GnRH receptor antagonist, acyline, abolished kisspeptin-10-induced LH release. Repetitive kisspeptin-10 administration also provided a GnRH-dependent signal to FSH secretion. These findings are consistent with the notion that, in primates, the transition from the juvenile (attenuated GnRH release) to pubertal (robust GnRH release) state is controlled by activation of GPR54 resulting from increased expression of hypothalamic KiSS-1 and release of kisspeptin in this region of the brain.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1562-1571 ◽  
Author(s):  
Yinyang Bai ◽  
Fei Chang ◽  
Rong Zhou ◽  
Peng-Peng Jin ◽  
Hirokazu Matsumoto ◽  
...  

Abstract Perinatal exposure to environmental levels of bisphenol-A (BPA) impairs sexually dimorphic behaviors in rodents. Kisspeptin neurons in anteroventral periventricular nucleus (AVPV), which plays an important role in the activation of GnRH neurons and the initiation of LH-surge, have been suggested to be sexual dimorphism in rats. This study focused on exploring the influence of a perinatal exposure to an environmental dose of BPA on the development and maturation of male AVPV kisspeptin neurons and hypothalamus-pituitary-gonadal axis. Female rats were injected sc with 2 μg BPA/kg·d from gestation d 10 through lactation d 7. Anatomical and functional changes in AVPV kisspeptin neurons and hypothalamus-pituitary-gonadal axis were examined in prepubertal, pubertal, and adult male rats exposed perinatally to BPA (BPA-rats). Here, we show that in postnatal d (PND)30/50/90 BPA-rats, the number of AVPV kisspeptin-immunoreactive cells was persistently increased in comparison with age-matched control male rats. The number of GnRH-immunoreactive cells in PND30 BPA-rats declined approximately 40% compared with control male rats, whereas that in PND50/90 BPA-rats was increased in a G protein-coupled receptor 54-dependent manner. Estradiol could induce a stable LH-surge in PND90 BPA-rats and control female rats, which was sensitive to the G protein-coupled receptor 54 inhibitor. In PND30/50 BPA-rats, plasma level of LH was higher, but the level of testosterone was lower than control male rats. These findings provide evidence that perinatal exposure to an environmental dose of BPA causes a sustained increase in AVPV kisspeptin neurons in male rats, leading to the generation of estradiol-induced LH-surge system.


2010 ◽  
Vol 298 (3) ◽  
pp. H1055-H1061 ◽  
Author(s):  
Brad R. S. Broughton ◽  
Alyson A. Miller ◽  
Christopher G. Sobey

Recent studies have identified that the novel membrane estrogen receptor, G protein-coupled receptor 30 (GPR30), is present in blood vessels. However, the signaling mechanisms associated with GPR30 in the vasculature remain unclear. We examined whether putative agonists of GPR30 exert vasorelaxant and/or antioxidant effects similar to those reported for estrogen. Using wire myography, we assessed the role of the endothelium in relaxation responses to the GPR30 agonists, G-1 and 5408-0877 (1 nM-10 μM), in U-46619-precontracted common carotid arteries from Sprague-Dawley rats. Furthermore, using lucigenin (5 μM)-enhanced chemiluminescence, we tested the effect of G-1 (10 μM) on superoxide levels. Specific immunofluorescence was also used to confirm GPR30 expression in the arterial wall. We found that G-1 and 5408-0877 induced a concentration-dependent relaxation in carotid arteries from both male and female rats. Interestingly, G-1- and 5408-0877-induced relaxation was abolished by endothelium removal and abrogated in the presence of the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (100 μM). In addition, G-1 significantly decreased NADPH (100 μM)-stimulated superoxide production by carotid and intracranial (pooled basilar and middle cerebral) arteries but also attenuated the superoxide signal detected in a cell-free xanthine/xanthine oxidase assay. Furthermore, GPR30 immunoreactivity was observed in endothelial and vascular smooth muscle cells of carotid arteries from both genders. These findings indicate that GPR30 is expressed throughout the arterial wall and that GPR30 agonists elicit endothelial-derived nitric oxide-dependent relaxation of the carotid artery in male and female rats. Additionally, G-1 appears to directly scavenge superoxide anion.


2019 ◽  
Vol 16 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Xiaoyang Zhang ◽  
Yonghua He ◽  
Quanhui Lin ◽  
Lili Huang ◽  
Qunwei Zhang ◽  
...  

Abstract Background Cooking oil fumes (COFs) are composed of particulate matter, polycyclic aromatic hydrocarbons, volatile organic compounds, aldehydes, and ketones, and are currently a global health concern. Some agents in COFs are mutagenic and carcinogenic. However, only a few reports have addressed the hazardous effects of COF exposure on the female reproductive system. In this study, we explored the effects of subchronic exposure to COFs on female gonads in vivo and the possible involvement of the G-protein-coupled receptor 30 signaling pathway. Methods COFs were generated by heating commercially available canola oil in an iron pot. Adult female Wistar rats at 2 months of age were exposed to COFs at 32 mg/m3 for 0, 0.5, 1, 2, or 4 h/day for 56 days. The estrous cycle in rats was studied twice at 7:00 a.m. and 7:00 p.m. on the 43rd treatment day until the current estrous cycle was complete. The rat body weight was measured before the experiment and at day 56 post-exposure. At the end of the experiment, rat blood was collected for gonadal hormone assay, and ovaries were collected for histology and mRNA isolation. The mRNA levels of GPR30, EGFR, STAT3, and ERK were determined by quantitative RT-PCR. Results At a concentration of 32.21 ± 5.11 mg/m3, COF exposure extended the estrous cycle in rats, and ovary coefficient decreased. COFs showed various effects on the sex hormone levels and follicles, depending on its exposure level. Exposure to COFs led to the changes in mRNA levels of the G-protein-coupled receptor 30 (GPR30), epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and extracellular signal-regulated kinase (ERK). Conclusion This study indicated that cooking oil fume exposure disrupted the estrous cycle, sex hormone patterns, and follicle development in female rats in a dose-dependent manner. These adverse effects of cooking oil fumes on female reproductive health were correlated with the G-protein-coupled receptor 30-mediated signaling pathway. Highlights Subchronic exposure to COFs for 56 days had gonadal toxicity in female rats, that disrupted the estrous cycle, sex hormone patterns, and follicle development in a dose-dependent manner. Reproductive endocrine disruption might be one of the female gonadotoxicity mechanisms of COFs. These adverse effects of COFs on female reproductive health were correlated with the GPR30-mediated signaling pathway.


2007 ◽  
Vol 193 (2) ◽  
pp. 311-321 ◽  
Author(s):  
Eugen Brailoiu ◽  
Siok L Dun ◽  
G Cristina Brailoiu ◽  
Keisuke Mizuo ◽  
Larry A Sklar ◽  
...  

The G protein-coupled receptor 30 (GPR 30) has been identified as the non-genomic estrogen receptor, and G-1, the specific ligand for GPR30. With the use of a polyclonal antiserum directed against the human C-terminus of GPR30, immunohistochemical studies revealed GPR30-immunoreactivity (irGPR30) in the brain of adult male and non-pregnant female rats. A high density of irGPR30 was noted in the Islands of Calleja and striatum. In the hypothalamus, irGPR30 was detected in the paraventricular nucleus and supraoptic nucleus. The anterior and posterior pituitary contained numerous irGPR30 cells and terminal-like endings. Cells in the hippocampal formation as well as the substantia nigra were irGPR30. In the brainstem, irGPR30 cells were noted in the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus; a cluster of cells were prominently labeled in the nucleus ambiguus. Tissue sections processed with pre-immune serum showed no irGPR30, affirming the specificity of the antiserum. G-1 (100 nM) caused a large increase of intracellular calcium concentrations [Ca2+ ]i in dissociated and cultured rat hypothalamic neurons, as assessed by microfluorometric Fura-2 imaging. The calcium response to a second application of G-1 showed a marked homologous desensitization. Our result shows a high expression of irGPR30 in the hypothalamic–pituitary axis, hippocampal formation, and brainstem autonomic nuclei; and the activation of GPR30 by G-1 is associated with a mobilization of calcium in dissociated and cultured rat hypothalamic neurons.


Sign in / Sign up

Export Citation Format

Share Document