scholarly journals Estrogen modulation of baroreflex function in conscious mice

2003 ◽  
Vol 284 (4) ◽  
pp. R983-R989 ◽  
Author(s):  
Jaya Pamidimukkala ◽  
Julia A. Taylor ◽  
Wade V. Welshons ◽  
Dennis B. Lubahn ◽  
Meredith Hay

It has been suggested that estrogen modulates baroreflex regulation of autonomic function. The present study evaluated the effects of estrogen on baroreflex regulation of heart rate in response to changes in blood pressure with phenylephrine (PE), ANG II, and sodium nitroprusside (SNP) in a conscious mouse model. Males and ovariectomized females with (OvxE+) and without (OvxE−) estradiol replacement chronically implanted with arterial and venous catheters were used in these studies. The slope of the baroreflex bradycardic responses to PE was significantly facilitated in OvxE+ females (−7.65 ± 1.37) compared with OvxE− females (−4.5 ± 0.4). Likewise, the slope of the baroreflex bradycardic responses to ANG II was significantly facilitated in OvxE+ females (−7.97 ± 1.06) compared with OvxE− females (−4.8 ± 1.6). Reflex tachycardic responses to SNP were comparable in all the groups. Finally, in male mice, the slope of ANG II-induced baroreflex bradycardia (−5.17 ± 0.95) was significantly less than that induced by PE (−8.50 ± 0.92), but this ANG II-mediated attenuation of reflex bradycardia was not observed in the female mice. These data support the hypothesis that estrogen facilitates baroreflex function in female mice and suggest that ANG II-mediated acute blunting of baroreflex regulation of heart rate may be sex dependent.

1992 ◽  
Vol 263 (1) ◽  
pp. R89-R94 ◽  
Author(s):  
M. J. Campagnole-Santos ◽  
S. B. Heringer ◽  
E. N. Batista ◽  
M. C. Khosla ◽  
R. A. Santos

The present study was designed to investigate the effect of intracerebroventricular (icv) and intravenous (iv) infusion of angiotensin (ANG)-(1-7), ANG III, and ANG II on the baroreceptor control of heart rate (BHR) in conscious rats. Reflex changes in HR were elicited by bolus iv injection of either phenylephrine or sodium nitroprusside before and within 1 and 3 h of icv infusion of ANG II (n = 10), ANG III (n = 9), ANG-(1-7) (n = 9), or saline (n = 9) at a rate of 3 nmol.7.5 microliter-1.h-1. In another group of animals (n = 23), iv infusion of the same amount of ANG peptides was carried out at a rate of 0.7 ml/h. The average ratio of changes in HR in beats per minute and changes in mean arterial pressure (MAP, mmHg) was used as an index of BHR sensitivity. ANG II and ANG III produced a significant increase in the basal levels of MAP, but only during the first hour of infusion (iv or icv). No significant changes in baseline HR were observed. ANG-(1-7) and saline infusion did not change basal levels of HR or MAP (iv or icv). ANG II (iv and icv) and ANG III (icv) caused a significant decrease in the BHR sensitivity for reflex bradycardia. In contrast, icv infusion of ANG-(1-7) induced a significant increase in BHR sensitivity for reflex bradycardia (-3.0 +/- 0.3, 1 h, and -2.8 +/- 0.1 beats.min-1.mmHg-1, 3 h vs. -2.1 +/- 0.2 beats.min-1.mmHg-1, before infusion).(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 56-56
Author(s):  
Kellea Nichols ◽  
Audrey Poupeau ◽  
Eva Gatineau ◽  
Gertrude Arthur ◽  
Ming Gong ◽  
...  

Abstract Objectives Sex differences exist in obesity associated with cardiovascular disease; however, underlying mechanisms are not completely understood. Previous studies from our laboratory demonstrated that the prorenin receptor (PRR) and its soluble form (sPRR) contribute to adipogenesis and blood pressure control. The present study aimed to determine whether adipose-sPRR stimulated obesity is associated with hypertension and whether it is sex-dependent. Methods Transgenic mice on the C57BL/6 J background were generated expressing the human form of the soluble prorenin receptor (HsPRR) in a Cre-inducible manner. Male mice expressing Cre recombinase under the control of the adiponectin promotor were bred to heterozygote HsPRR/+ female mice to generate mice over-secreting sPRR (adi-HsPRR) and control littermate mice (CTL). The secretion of sPRR in the media doubled in primary adipocytes of adi-HsPRR mice compared to control mice (sPRR. CTL: 3729 ± 805 pg/ml; adi-HsPRR: 6170 ± 1237 pg/ml, P < 0.05) validating the mouse model. Male (CTL = 4; adi-HsPRR = 8) and female mice (CTL = 10; adi-HsPRR = 10) were fed a low-fat (LF) diet or a high-fat diet (HF) for 20 weeks. Body weight was assessed weekly and EchoMRI was examined monthly. Results After 20 weeks on LF diet, adi-HsPRR male mice gained significantly more weight than CTL male mice (CTL: 25.1 ± 0.8 g; adi-HsPRR: 29.0 ± 0.8 g P < 0.05), whereas no significant differences in body weights were observed in female mice. The body composition revealed a significant increase of fat mass, specifically in the epidydimal fat (CTL: 0.35 ± 0.04 g; adi-HsPRR: 0.61 ± 0.07 g, P < 0.05), and lean mass of HsPRR male mice compared to CTL male mice. In contrast, female mice exhibited similar body weights (CTL: 20.6 ± 0.3 g; adi-HsPRR: 20.4 ± 0.4 g) and there was no differences of fat mass or lean mass between CTL and adi-HsPRR female mice. The sex-specific mechanism of sPRR on adipogenesis and blood pressure (by radiotelemetry) with LF and HF diet is currently under investigation. Conclusions Overall, sPRR stimulated body weight gain and fat mass expansion in male mice but not in female mice suggesting that female mice are protected from sPRR induced-hypertrophic effect. Funding Sources R01_HL142969–01 Yiannikouris, PI 07/15/2018–06/30/2022 NIH/NHLBI Title: The role of soluble prorenin receptor in hypertension associated with obesity Role: Ph.D Graduate Student.


2000 ◽  
Vol 278 (2) ◽  
pp. H558-H566 ◽  
Author(s):  
Elisabeth Gaudet ◽  
Shirley J. Godwin ◽  
Geoffrey A. Head

The effect of chronic activation or inhibition of central ANG II receptors on cardiac baroreflex function in conscious normotensive rabbits was examined. Animals received a fourth ventricular (4V) infusion of ANG II (30 and 100 ng/h), losartan (3 and 30 μg/h), or Ringer solution (2 μl/h) for 2 wk. After 1 and 2 wk, ANG II (100 ng/h) decreased cardiac baroreflex gain by 20 and 37%, respectively ( P = 0.015), whereas losartan (30 μg/h) increased baroreflex gain by 24 and 58%, respectively ( P = 0.02). Within 1 wk of the end of the infusions, cardiac baroreflex gain had returned to control. Ringer solution or the lower doses of ANG II or losartan did not modify the cardiac baroreflex function. Blood pressure and heart rate were not altered by any treatment, nor was their variability affected. These data demonstrate a novel long-term modulation of cardiac baroreflexes by endogenous ANG II that is independent of blood pressure level.


2011 ◽  
Vol 43 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Victoria L. M. Herrera ◽  
Pia Bagamasbad ◽  
Julius L. Decano ◽  
Nelson Ruiz-Opazo

Arginine vasopressin (AVP) and angiotensin II (ANG II) are distinct peptide hormones involved in multiple organs modulating renal, cardiovascular, and brain functions. They achieve these functions via specific G protein-coupled receptors, respectively. The AVR/NAVR locus encodes two overlapping V2-type vasopressin isoreceptors: angiotensin-vasopressin receptor (AVR) responding to ANG II and AVP equivalently, and nonangiotensin vasopressin receptor (NAVR), which binds vasopressin exclusively. AVR and NAVR are expressed from a single gene by alternative promoter usage that is synergistically upregulated by testosterone and estrogen. This study tested the hypothesis that AVR/NAVR modulates urinary concentrating ability, blood pressure, and cognitive performance in vivo in a sex-specific manner. We developed a C57BL/6 inbred AVR/NAVR−/− knockout mouse that showed lower blood pressure in both male and female subjects and a urinary-concentrating defect restricted to male mice. We also detected sex-specific effects on cognitive and anxiety-like behaviors. AVR/NAVR−/− male mice exhibited impaired visuospatial and associative learning, while female mice showed improved performance in both type of cognition. AVR/NAVR deficiency produced an anxiolytic-like effect in female mice, while males were unaffected. Analysis of AVR- and NAVR-mediated phosphorylation/dephosphorylation of signaling proteins revealed activation/deactivation of known modulators of cognitive function. Our studies identify AVR/NAVR as key receptors involved in blood pressure regulation and sex-specific modulation of renal water homeostasis, cognitive function, and anxiety-like behavior. As such, the AVR/NAVR receptor system provides a molecular mechanism for sexually diergic traits and a putative common pathway for the emerging association of hypertension and cognitive decline and dementia.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Frederique B Yiannikouris ◽  
Genevieve Nguyen

Objectives: Recent studies demonstrated that the prorenin renin receptor (PRR) is present in adipose tissue. In adipose tissue stromal cells, PRR has the ability to bind renin and prorenin and contributes to the generation of angiotensinI (AngI). However, the contribution of adipocyte PRR to the generation of the vasoactive peptide, AngII and therefore to the regulation of blood pressure in physiological condition is unknown. The purpose of this study was to develop and characterize a new mouse model with adipocyte-specific PRR deficiency and define the role of adipose PRR in normal physiology. Methods and results: Female mice with 2 loxP sites flanking exon 2 of the PRR gene (floxed alleles, PRRfl/fl) were bred with aP2-Cre or with Adi-Cre male mice. Since PRR is located in the X chromosome, the male mice generated from the breeding were homozygotes for the deletion (PRRaP2 and PRRAdi). From the breeding, 5 PRRfl/fl, 2 PRRaP2 and 5 PRRAdi male mice were generated suggesting that the deletion of PRR in adipocyte was not lethal. Mice were fed on chow diet during 20 weeks. The body weight, the fat, lean mass and the blood pressure were quantified. Preliminary data suggest that the body weights (BW) were slightly decreased in PRRaP2 and PRRAdi compared to PRRfl/fl (PRRfl/fl: 29±1g; PRRaP2: 25±5g; PRRAdi: 28±1g). The slight reduction in BW was attributed to a reduction in fat mass (PRRfl/fl: 4.8±0.9g; PRRaP2: 3.8±1.8g; PRRAdi: 1.9±0.4g). Blood pressure was measured by plethysmography and by radiotelemetry. Preliminary data demonstrated that under physiological conditions, the SBP was not changed in PRRaP2 male mice compared to PRRfl/fl mice (plethysmography: PRRfl/fl: 108±1 mmHg; PRRaP2: 99±7 mmHg; radiotelemetry: PRRfl/fl: 129±2 mmHg; PRRaP2: 128±6 mmHg). The SBP of PRRAdi is currently under investigation. Conclusions: These results demonstrate the viability of mice with specific adipocyte deficiency of PRR. Future studies will define the effects of adipocyte PRR deficiency on obesity-induced hypertension.


2006 ◽  
Vol 290 (4) ◽  
pp. R1027-R1034 ◽  
Author(s):  
Andréia C. Alzamora ◽  
Robson A. S. Santos ◽  
Maria J. Campagnole-Santos

We determined the effect of microinjection of ANG-(1–7) and ANG II into two key regions of the medulla that control the circulation [rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively)] on baroreflex control of heart rate (HR) in anesthetized rats. Reflex bradycardia and tachycardia were induced by increases and decreases in mean arterial pressure produced by intravenous phenylephrine and sodium nitroprusside, respectively. The pressor effects of ANG-(1–7) and ANG II (25 pmol) after RVLM microinjection (11 ± 0.8 and 10 ± 2 mmHg, respectively) were not accompanied by consistent changes in HR. In addition, RVLM microinjection of these angiotensin peptides did not alter the bradycardic or tachycardic component of the baroreflex. CVLM microinjections of ANG-(1–7) and ANG II produced hypotension (−11 ± 1.5 and −11 ± 1.9 mmHg, respectively) that was similarly not accompanied by significant changes in HR. However, CVLM microinjections of angiotensins induced differential changes in the baroreflex control of HR. ANG-(1–7) attenuated the baroreflex bradycardia (0.26 ± 0.06 ms/mmHg vs. 0.42 ± 0.08 ms/mmHg before treatment) and facilitated the baroreflex tachycardia (0.86 ± 0.19 ms/mmHg vs. 0.42 ± 0.10 ms/mmHg before treatment); ANG II produced the opposite effect, attenuating baroreflex tachycardia (0.09 ± 0.06 ms/mmHg vs. 0.31 ± 0.07 ms/mmHg before treatment) and facilitating the baroreflex bradycardia (0.67 ± 0.16 ms/mmHg vs. 0.41 ± 0.05 ms/mmHg before treatment). The modulatory effect of ANG II and ANG-(1–7) on baroreflex sensitivity was completely abolished by peripheral administration of methylatropine. These results suggest that ANG II and ANG-(1–7) at the CVLM produce a differential modulation of the baroreflex control of HR, probably through distinct effects on the parasympathetic drive to the heart.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 727-727
Author(s):  
Ovidiu Baltatu ◽  
Ben J Janssen ◽  
Ralph Plehm ◽  
Detlev Ganten ◽  
Michael Bader

P191 The brain renin-angiotensin system (RAS) system may play a functional role in the long-term and short-term control of blood pressure (BPV) and heart rate variability (HRV). To study this we recorded in transgenic rats TGR(ASrAOGEN) with low brain angiotensinogen levels the 24-h variation of BP and HR during basal and hypertensive conditions, induced by a low-dose s.c. infusion of angiotensin II (Ang II, 100 ng/kg/min) for 7 days. Cardiovascular parameters were monitored by telemetry. Short-term BPV and HRV were evaluated by spectral analysis and as a measure of baroreflex sensitivity the transfer gain between the pressure and heart rate variations was calculated. During the Ang II infusion, in SD but not TGR(ASrAOGEN) rats, the 24-h rhythm of BP was inverted (5.8 ± 2 vs. -0.4 ± 1.8 mm Hg/group of day-night differences of BP, p< 0.05, respectively). In contrast, in both the SD and TGR(ASrAOGEN) rats, the 24-h HR rhythms remained unaltered and paralleled those of locomotor activity. The increase of systolic BP was significantly reduced in TGR(ASrAOGEN) in comparison to SD rats as previously described, while the HR was not altered in TGR(ASrAOGEN) nor in SD rats. The spectral index of baroreflex sensitivity (FFT gain between 0.3-0.6 Hz) was significantly higher in TGR(ASrAOGEN) than SD rats during control (0.71 ± 0.1 vs. 0.35 ± 0.06, p<0.05), but not during Ang II infusion (0.6 ± 0.07 vs. 0.4 ± 0.1, p>0.05). These results demonstrate that the brain RAS plays an important role in mediating the effects of Ang II on the circadian variation of BP. Furthermore these data are consistent with the view that the brain RAS modulates baroreflex control of HR in rats, with AII having an inhibitory role.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Quaisar Ali ◽  
Yonnie Wu ◽  
Tadashi Inagami ◽  
Tahir Hussain

Angiotensin II acting via Angiotensin II type 2 receptors (AT2Rs) is believed to be protective against blood pressure increase and affects renal function under pathophysiological condition. Recently we have observed that stimulation of AT2Rs in male obese Zucker rats has shifted the two opposing arms of renin angiotensin system (RAS) i.e. ACE-Ang II-AT1 vs ACE2/Ang-(1-7)-Mas. Evidence suggests that estrogen regulates RAS, including AT2R in female mice. We hypothesized that AT2R has a gender specific regulation of RAS. In the present study, we investigated the role of AT2Rs in regulating RAS components in male and female mice. Kidney cortex from AT2R knockout (AT2RKO) male and female mice and wild type (WT) with similar background (C57BL/6) of 20 weeks of age were used in the study. The cortical ACE expression (ng ACE/μg tissue) was significantly increased in AT2RKO mice (3±0.02) compared to WT males (1.9±0.02). LC/MS analysis of cortical tissue revealed that Ang II was also significantly increased in AT2RKO mice (WT: 31±3, AT2RKO: 47±3 fmoles/mg tissue). Deletion of AT2R significantly increased AT1R (204%, 204 of 100) expression and had no effect on renin activity compared to WT males. The cortical expression of ACE2 activity (WT: 113±8, AT2RKO: 40±11, RFU/min), Ang-(1-7) levels (WT: 7.3±1.4, AT2RKO: 3±0.8 fmoles/mg tissue) and Mas receptor (AT2RKO: 54±15, % of WT) was significantly decreased in AT2RKO males compared to WT. The cortical expression of the AT2R and MasR was 2-fold greater in WT females compared to WT male. The renin activity (WT: 32±2, AT2RKO: 21±0.3, RFU/min) and MasR expression (WT: 187.5±55, AT2KO: 47±9) was significantly decreased in AT2RKO females compared to the female WT. Interestingly, Ang-(1-7) level (WT: 5.7±0.7, AT2RKO 2.6±0.7 fmoles/mg tissue) was decreased but no changes in ACE or ACE2 activity was observed in AT2KO females compared to their WT, suggesting a role of non-ACE2 pathway. This study suggests that AT2R regulates ACE/ACE2 ratio-Ang II-AT1R expression negatively only in males, whereas in females, it regulates Ang-(1-7) potentially via non-ACE2 pathway. Such changes indicate a gender specific mechanisms potentially associated with AT2R-mediated regulation of renal function and blood pressure control.


Sign in / Sign up

Export Citation Format

Share Document