scholarly journals Interactions between 11β-hydroxysteroid dehydrogenase and COX-2 in kidney

2005 ◽  
Vol 288 (6) ◽  
pp. R1767-R1773 ◽  
Author(s):  
Bing Yao ◽  
Raymond C. Harris ◽  
Ming-Zhi Zhang

The syndrome of apparent mineralocorticoid excess (SAME) is an autosomal recessive form of salt-sensitive hypertension caused by deficiency of the kidney type 2 11β-hydroxysteroid dehydrogenase (11βHSD2). In this disorder, cortisol is not inactivated by 11βHSD2, occupies mineralocorticoid receptors (MRs), and causes excessive sodium retention and hypertension. In renal medulla, prostaglandins derived from cyclooxygenase-2 (COX-2) stimulate sodium and water excretion, and renal medullary COX-2 expression increases after mineralocorticoid administration. We investigated whether medullary COX-2 also increases in rats with 11βHSD2 inhibition and examined its possible role in the development of hypertension. 11βHSD2 inhibition increased medullary and decreased cortical COX-2 expression in adult rats and induced high blood pressure in high-salt-treated rats. COX-2 inhibition had no effect on blood pressure in control animals but further increased blood pressure in high-salt-treated rats with 11βHSD2 inhibition. COX-1 inhibition had no effect on blood pressure in either control or experimental animals. 11βHSD2 inhibition also led to medullary COX-2 increase and cortical COX-2 decrease in weaning rats, primarily through activation of MRs. In the suckling rats, medullary COX-2 expression was very low, consistent with a urinary concentrating defect. 11βHSD2 inhibition had no effect on either cortical or medullary COX-2 expression in the suckling rats, consistent with low levels of circulating corticosterone in these animals. These data indicate that COX-2 plays a modulating role in the development of hypertension due to 11βHSD2 deficiency and that 11βHSD2 regulates renal COX-2 expression by preventing glucocorticoid access to MRs during postnatal development.

2008 ◽  
Vol 36 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Yong Liu ◽  
Ravinder J. Singh ◽  
Kristie Usa ◽  
Brian C. Netzel ◽  
Mingyu Liang

The Dahl salt-sensitive rat is a widely used model of human salt-sensitive forms of hypertension. The kidney plays an important role in the pathogenesis of Dahl salt-sensitive hypertension, but the molecular mechanisms involved remain a subject of intensive investigation. Gene expression profiling studies suggested that 11β-hydroxysteroid dehydrogenase type 1 might be dysregulated in the renal medulla of Dahl salt-sensitive rats. Additional analysis confirmed that renal medullary expression of 11β-hydroxysteroid dehydrogenase type 1 was downregulated by a high-salt diet in SS-13BN rats, a consomic rat strain with reduced blood pressure salt sensitivity, but not in Dahl salt-sensitive rats. 11β-Hydroxysteroid dehydrogenase type 1 is known to convert inactive 11-dehydrocorticosterone to active corticosterone. The urinary corticosterone/11-dehydrocorticosterone ratio as well as urinary excretion of corticosterone was higher in Dahl salt-sensitive rats than in SS-13BN rats. Knockdown of renal medullary 11β-hydroxysteroid dehydrogenase type 1 with small-interfering RNA attenuated the early phase of salt-induced hypertension in Dahl salt-sensitive rats and reduced urinary excretion of corticosterone. Knockdown of 11β-hydroxysteroid dehydrogenase type 1 did not affect blood pressure in SS-13BN rats. Long-term attenuation of salt-induced hypertension was achieved with small hairpin RNA targeting renal medullary 11β-hydroxysteroid dehydrogenase type 1. In summary, we have demonstrated that suppression of 11β-hydroxysteroid dehydrogenase type 1 expression in the renal medulla attenuates salt-induced hypertension in Dahl salt-sensitive rats.


2017 ◽  
Vol 42 (3) ◽  
pp. 1264-1273
Author(s):  
Zhengchao Wang ◽  
Qing Zhu ◽  
Weili Wang ◽  
Fan Yi ◽  
Pin-Lan Li ◽  
...  

Background: Our previous study has detected a stem cell deficiency in the renal medulla in Dahl salt-sensitive (S) rats. This study determined whether infusion of valproic acid (VA), an agent known to stimulate the stem cell function, attenuated salt-sensitive hypertension in Dahl S rats. Methods: Uninephrectomized Dahl S rats were infused with vehicle or VA (50mg/kg/d) into the renal medulla and fed with a low (LS) or high salt diet (HS). Stem cell marker and number were analyzed by immunohistochemistry, Real-time RT-PCR and Western blot. Sodium excretion and blood pressure were measured. Results: VA significantly increased the mRNA and protein levels of FGF2, a stem cell niche factor, and CD133, a stem cell marker. The number of CD133+ cells was significantly increased in the renal medulla in VA-treated rats. Meanwhile, high salt-induced increases in the mRNA level of proinflammatory factors interleukin-1β and interleukin-6 were blocked in VA-treated rats. Functionally, sodium excretion in response to the blood pressure increase and acute sodium loading was significantly enhanced, sodium retention attenuated, high salt-induced increase of blood pressure reduced in VA-treated rats. Conclusion: Activation of stem cell function by VA inhibits the activation of proinflammatory factors and attenuates salt-sensitive hypertension in Dahl S rats.


2006 ◽  
Vol 290 (2) ◽  
pp. F542-F549 ◽  
Author(s):  
Wenling Ye ◽  
Hui Zhang ◽  
Elaine Hillas ◽  
Donald E. Kohan ◽  
R. Lance Miller ◽  
...  

Expression of cyclooxygenase (COX)-2, but not COX-1, in the renal medulla is stimulated by chronic salt loading; yet the functional implication of this phenomenon is incompletely understood. The present study examined the cellular localization and antihypertensive function of high-salt-induced COX-2 expression in the renal medulla, with a parallel assessment of the function of COX-1. COX-2 protein expression in response to high-salt loading, assessed by immunostaining, was found predominantly in inner medullary interstitial cells, whereas COX-1 protein was abundant in collecting duct (CD) and inner medullary interstitial cells and was not affected by high salt. We compared mRNA expressions of COX-1 and COX-2 in CD vs. non-CD cells isolated from aquaporin 2-green fluorescent protein transgenic mice. A low level of COX-2 mRNA, but a high level of COX-1 mRNA, as determined by real-time RT-PCR, was detected in CD compared with non-CD segments. During high-salt intake, chronic infusions of the COX-2 blocker NS-398 and the COX-1 blocker SC-560 into the renal medulla of Sprague-Dawley rats for 5 days induced ∼30- and 15-mmHg increases in mean arterial pressure, respectively. During similar high-salt intake, COX-1 knockout mice exhibited a gradual, but significant, increase in systolic blood pressure that was associated with a marked suppression of urinary PGE2 excretion. Therefore, we conclude that the two COX isoforms in the renal medulla play a similar role in the stabilization of arterial blood pressure during salt loading.


2019 ◽  
Vol 20 (14) ◽  
pp. 3495 ◽  
Author(s):  
Yanling Yan ◽  
Jiayan Wang ◽  
Muhammad A. Chaudhry ◽  
Ying Nie ◽  
Shuyan Sun ◽  
...  

We have demonstrated that Na/K-ATPase acts as a receptor for reactive oxygen species (ROS), regulating renal Na+ handling and blood pressure. TALLYHO/JngJ (TH) mice are believed to mimic the state of obesity in humans with a polygenic background of type 2 diabetes. This present work is to investigate the role of Na/K-ATPase signaling in TH mice, focusing on susceptibility to hypertension due to chronic excess salt ingestion. Age-matched male TH and the control C57BL/6J (B6) mice were fed either normal diet or high salt diet (HS: 2, 4, and 8% NaCl) to construct the renal function curve. Na/K-ATPase signaling including c-Src and ERK1/2 phosphorylation, as well as protein carbonylation (a commonly used marker for enhanced ROS production), were assessed in the kidney cortex tissues by Western blot. Urinary and plasma Na+ levels were measured by flame photometry. When compared to B6 mice, TH mice developed salt-sensitive hypertension and responded to a high salt diet with a significant rise in systolic blood pressure indicative of a blunted pressure-natriuresis relationship. These findings were evidenced by a decrease in total and fractional Na+ excretion and a right-shifted renal function curve with a reduced slope. This salt-sensitive hypertension correlated with changes in the Na/K-ATPase signaling. Specifically, Na/K-ATPase signaling was not able to be stimulated by HS due to the activated baseline protein carbonylation, phosphorylation of c-Src and ERK1/2. These findings support the emerging view that Na/K-ATPase signaling contributes to metabolic disease and suggest that malfunction of the Na/K-ATPase signaling may promote the development of salt-sensitive hypertension in obesity. The increased basal level of renal Na/K-ATPase-dependent redox signaling may be responsible for the development of salt-sensitive hypertension in polygenic obese TH mice.


2003 ◽  
Vol 12 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Mingyu Liang ◽  
Baozhi Yuan ◽  
Elizabeth Rute ◽  
Andrew S. Greene ◽  
Michael Olivier ◽  
...  

Dahl salt-sensitive SS and consomic, salt-resistant SS-13BN/Mcw rats possess a highly similar genetic background but exhibit substantial differences in blood pressure salt sensitivity. We used cDNA microarrays to examine sequential changes of mRNA expression of ∼2,000 currently known rat genes in the renal medulla (a tissue critical for long-term blood pressure regulation) in SS and SS-13BN/Mcw rats in response to a high-salt diet (16 h, 3 days, or 2 wk). Differentially expressed genes in each between-group comparison were identified based on a threshold determined experimentally using a reference distribution that was constructed by comparing rats within the same group. A difference analysis of 54 microarrays identified 50 genes that exhibited the most distinct temporal patterns of expression between SS and SS-13BN/Mcw rats over the entire time course. Thirty of these genes could be linked to the regulation of arterial blood pressure or renal injury based on their known involvement in functional pathways such as renal tubular transport, metabolism of vasoactive substances, extracellular matrix formation, and apoptosis. Importantly, the majority of the 30 genes exhibited temporal expression patterns that would be expected to lower arterial pressure and reduce renal injury in SS-13BN/Mcw compared with SS rats. The phenotypic impact of the other 20 genes was less clear. These 50 genes are widely distributed on chromosome 13 and several other chromosomes. This suggested that primary genetic defects, although important, are unlikely to be solely responsible for the full manifestation of this type of hypertension and associated injury phenotypes. In summary, the results of this study identified a number of pathways potentially important for the amelioration of hypertension and renal injury in SS-13BN/Mcw rats, and these results generated a series of testable hypotheses related to the role of the renal medulla in the complex mechanism of salt-sensitive hypertension.


2016 ◽  
Vol 311 (4) ◽  
pp. F822-F829 ◽  
Author(s):  
Shoujin Hao ◽  
AnnMarie DelliPizzi ◽  
Mariana Quiroz-Munoz ◽  
Houli Jiang ◽  
Nicholas R. Ferreri

The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 μg·kg−1·day−1) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by ∼75% in TAL tubules from rats given 1% NaCl concomitant with a ∼60% inhibition of COX-2-dependent PGE2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced ∼40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 μg·kg−1·day−1), which increased COX-2 expression and renal PGE2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE2 synthesis, thereby mitigating the inhibitory effects of PGE2 on these transporters and decreasing urine volume.


2012 ◽  
Vol 303 (4) ◽  
pp. F494-F502 ◽  
Author(s):  
Louise C. Evans ◽  
Dawn E. Livingstone ◽  
Christopher J. Kenyon ◽  
Maurits A. Jansen ◽  
James W. Dear ◽  
...  

In aldosterone target tissues, 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) is coexpressed with mineralocorticoid receptors (MR) and protects the receptor from activation by glucocorticoids. Null mutations in the encoding gene, HSD11B2, cause apparent mineralocorticoid excess, in which hypertension is thought to reflect volume expansion secondary to sodium retention. Hsd11b2−/− mice are indeed hypertensive, but impaired natriuretic capacity is associated with significant volume contraction, suggestive of a urine concentrating defect. Water turnover and the urine concentrating response to a 24-h water deprivation challenge were therefore assessed in Hsd11b2 −/− mice and controls. Hsd11b2 −/− mice have a severe and progressive polyuric/polydipsic phenotype. In younger mice (∼2 mo of age), polyuria was associated with decreased abundance of aqp2 and aqp3 mRNA. The expression of other genes involved in water transport ( aqp4, slc14a2, and slc12a2) was not changed. The kidney was structurally normal, and the concentrating response to water deprivation was intact. In older Hsd11b2 −/− mice (>6 mo), polyuria was associated with a severe atrophy of the renal medulla and downregulation of aqp2, aqp3, aqp4, slc14a2, and slc12a2. The concentrating response to water deprivation was impaired, and the natriuretic effect of the loop diuretic bumetanide was lost. In older Hsd11b2 −/− mice, the V2 receptor agonist desmopressin did not restore full urine concentrating capacity. We find that Hsd11b2 −/− mice develop nephrogenic diabetes insipidus. Gross changes to renal structure are observed, but these were probably secondary to sustained polyuria, rather than of developmental origin.


2007 ◽  
Vol 293 (6) ◽  
pp. F1805-F1810 ◽  
Author(s):  
Yuqiang Ge ◽  
Kevin A. Strait ◽  
Peter K. Stricklett ◽  
Tianxin Yang ◽  
Donald E. Kohan

Collecting duct (CD)-derived endothelin-1 (ET-1) exerts natriuretic, diuretic, and hypotensive effects. In vitro studies have implicated cyclooxygenase (COX) metabolites, and particularly PGE2, as important mediators of CD ET-1 effects. However, it is unknown whether PGE2 mediates CD-derived ET-1 actions in vivo. To test this, CD ET-1 knockout (KO) and control mice were studied. During normal salt and water intake, urinary PGE2 excretion was unexpectedly increased in CD ET-1 KO mice compared with controls. Salt loading markedly increased urinary PGE2 excretion in both groups of mice; however, the levels remained relatively higher in KO animals. Acutely isolated inner medullary collecting duct (IMCD) from KO mice also had increased PGE2 production. The increased IMCD PGE2 was COX-2 dependent, since NS-398 blocked all PGE2 production. However, increased CD ET-1 KO COX-2 protein or mRNA could not be detected in inner medulla or IMCD, respectively. Inner medullary COX-1 mRNA and protein levels and IMCD COX-1 mRNA levels were unaffected by Na intake or CD ET-1 KO. KO mice on a normal or high-Na diet had elevated blood pressure compared with controls; this difference was not altered by indomethacin or NS-398 treatment. However, indomethacin or NS-398 did increase urine osmolality and reduce urine volume in KO, but not control, animals. In summary, IMCD COX-2-dependent PGE2 production is increased in CD ET-1 KO mice, indicating that CD-derived ET-1 is not a primary regulator of IMCD PGE2. Furthermore, the increased PGE2 in CD ET-1 KO mice partly compensates for loss of ET-1 with respect to maintaining urinary water excretion, but not in blood pressure control.


2005 ◽  
Vol 288 (4) ◽  
pp. F810-F815 ◽  
Author(s):  
Laura L. Howard ◽  
Matthew E. Patterson ◽  
John J. Mullins ◽  
Kenneth D. Mitchell

Transient exposure to ANG II results in the development of salt-sensitive hypertension in rats. This study was performed to determine whether a transient hypertensive episode can induce salt-sensitive hypertension in transgenic rats with inducible expression of the mouse Ren2 renin gene [strain name TGR(Cyp1a1-Ren2)]. Systolic blood pressures were measured in conscious male Cyp1a1-Ren2 rats ( n = 6) during control conditions and during dietary administration of indole-3-carbinol (I3C; 0.15%, wt/wt), for 14 days. Systolic pressure increased from 135 ± 5 to 233 ± 7 mmHg by day 14. I3C administration was terminated and blood pressure returned to normal levels (137 ± 5 mmHg) within 10 days. Subsequently, the rats were placed on a high-salt diet (8% NaCl) for 10 days. Systolic pressure increased by 34 ± 2 mmHg throughout 10 days of the high-salt diet. Neither glomerular filtration rate nor renal plasma flow was altered in Cyp1a1-Ren2 rats with salt-sensitive hypertension. In a separate group of male Cyp1a1-Ren2 rats ( n = 6) transiently induced with 0.15% I3C for 14 days, administration of the superoxide dismutase mimetic tempol (4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl, 2 mM) attenuated the increase in systolic pressure induced by high salt. Systolic pressure increased by only 11 ± 1 mmHg throughout 8 days of a high-salt diet and tempol administration. Thus transient induction of ANG II-dependent hypertension via activation of the Cyp1a1-Ren2 transgene induces salt-sensitive hypertension in these transgenic rats. The attenuation by tempol of the high salt-induced blood pressure elevation indicates that ANG II-induced production of superoxide anion contributes to the development of salt-sensitive hypertension after transient induction of ANG II-dependent hypertension.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Junping Hu ◽  
Qing Zhu ◽  
Wei-Qing Han ◽  
Pin-Lan Li ◽  
Ningjun Li

Transplantation of mesenchymal stem cells (MSCs) has been employed as a therapeutic strategy for many different diseases. We have recently shown that there is a stem cell dysfunction in the renal medulla that may contribute to the development of salt-sensitive hypertension in Dahl S rats. The present study tested the hypothesis that transplantation of MSCs into the renal medulla improves salt-sensitive hypertension in Dahl S rats. Rat adult MSCs were obtained from Texas A&M Health Science Center, ex-vivo expanded and infused (5 million cells) into the renal medulla in uninephrectomized Dahl S rats, which were then treated with low salt (LS, 0.4% NaCl) or high salt (HS, 8% NaCl) diet for 10 days. Results showed that the mRNA levels of stem cell markers CD133 and CD90 were increased by 60% and 70%, respectively, in the renal medulla in MSC-treated rats compared with control cell-treated rats. HS challenge increased mean arterial blood pressure in control cell-treated animals (from 113.9 ± 3.4 to 153.5 ± 4.8 mmHg), which was significantly attenuated in MSC-treated animals (from 114.1 ± 3.5 to 131.3 ± 2.5 mmHg). Meanwhile, ELISA analysis showed that the levels of pro-inflammatory cytokine interleukin-1β in the renal medulla were remarkably increased in HS-treated rats compared with LS-treated rats, which was blocked in MSC-treated rats (1.81 ± 0.18 ng/mg protein in LS group, 2.84 ± 0.57 in HS +control cell and 1.83 ± 0.35 in HS+MSC). Furthermore, immunostaining showed that the significant increase in immune cell (CD43+) infiltration into the renal medulla in HS control rats was reduced in HS+MSC rats. These results suggest that correction of stem cell dysfunction in the renal medulla attenuated inflammation in this kidney region after HS challenge and improved high salt-induced hypertension in Dahls S rats, which may serve as a therapeutic approach for salt-sensitive hypertension (supported by NIH grant HL89563 and HL106042)


Sign in / Sign up

Export Citation Format

Share Document