scholarly journals The proximal tubule in the pathophysiology of the diabetic kidney

2011 ◽  
Vol 300 (5) ◽  
pp. R1009-R1022 ◽  
Author(s):  
Volker Vallon

Diabetic nephropathy is a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved in the early changes of the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. This review focuses on the proximal tubule in the early diabetic kidney, particularly on its exposure and response to high glucose levels, albuminuria, and other factors in the diabetic glomerular filtrate, the hyperreabsorption of glucose, the unique molecular signature of the tubular growth phenotype, including aspects of senescence, and the resulting cellular and functional consequences. The latter includes the local release of proinflammatory chemokines and changes in proximal tubular salt and fluid reabsorption, which form the basis for the strong tubular control of glomerular filtration in the early diabetic kidney, including glomerular hyperfiltration and odd responses like the salt paradox. Importantly, these early proximal tubular changes can set the stage for oxidative stress, inflammation, hypoxia, and tubulointerstitial fibrosis, and thereby for the progression of diabetic renal disease.

2003 ◽  
Vol 284 (6) ◽  
pp. F1138-F1144 ◽  
Author(s):  
Kumar Sharma ◽  
Peter McCue ◽  
Stephen R. Dunn

Diabetic nephropathy is increasing in incidence and is now the number one cause of end-stage renal disease in the industrialized world. To gain insight into the genetic susceptibility and pathophysiology of diabetic nephropathy, an appropriate mouse model of diabetic nephropathy would be critical. A large number of mouse models of diabetes have been identified and their kidney disease characterized to various degrees. Perhaps the best characterized and most intensively investigated model is the db/ db mouse. Because this model appears to exhibit the most consistent and robust increase in albuminuria and mesangial matrix expansion, it has been used as a model of progressive diabetic renal disease. In this review, we present the findings from various studies on the renal pathology of the db/ db mouse model of diabetes in the context of human diabetic nephropathy. Furthermore, we discuss shortfalls of assessing functional renal disease in mouse models of diabetic kidney disease.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Salah El-Din A Shelbaya ◽  
Hanan M Ali ◽  
Rana H Ibrahim ◽  
Nourhan Safwat Sawirs

Abstract Background Nephropathy, a major complication of diabetes, is the leading cause of end-stage renal disease. Early identification of nephropathy in diabetes patients is crucial because it creates opportunity for preventing the incidence of DN and/or even slows down the process of end-stage renal disease attributed to diabetes. Human podocytes (Pods) have been demonstrated to be functionally and structurally injured in the natural history of diabetic nephropathy. Aim of the Work To evaluate the possible association between the urinary podocalyxin levels and severity and grade of diabetic nephropathy and to use urinary podocalyxin as a non-invasive marker for early stage of diabetic nephropathy in type 2 DM. Patients and Methods We collected 60 known clinically and biochemically type 2 diabetic patients.20 diabetic patients with no evidence of diabetic nephropathy, 20 patients diagnosed as diabetic nephropathy in microalbuminuria stages and 20 patients diagnosed as diabetic nephropathy in macroalbuminuria stages from Ain Shams University hospitals between April and December 2018 and 20 apparently healthy volunteers will included as a control group. Results Urinary PCX was significantly higher in patients group compared to control group. Urinary PCX was significantly higher in microalbuminuric group than in normoalbuminuric group and higher in macroalbuminuric group than in microalbuminuric group. There was a positive significant correlation between FBS, 2HrPP, HBA1C and urinary PCX. There was a positive significant correlation between s.create and urinary PCX. There was a positive significant correlation between ACR and urinary PCX. Conclusion Urinary podocalyxin seems to be beneficial as an early marker for early stages of diabetic nephropathy in type 2 DM patients.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Eduardo De la Cruz-Cano ◽  
Cristina del C. Jiménez-González ◽  
Vicente Morales-García ◽  
Conny Pineda-Pérez ◽  
Juan G. Tejas-Juárez ◽  
...  

Abstract Background Diabetic nephropathy is a global common cause of chronic kidney disease and end-stage renal disease. A lot of research has been conducted in biomedical sciences, which has enhanced understanding of the pathophysiology of diabetic nephropathy and has expanded the potential available therapies. An increasing number of evidence suggests that genetic alterations play a major role in development and progression of diabetic nephropathy. This systematic review was focused on searching an association between Arg913Gln variation in SLC12A3 gene with diabetic nephropathy in individuals with Type 2 Diabetes and Gitelman Syndrome. Methods An extensive systematic review of the literature was completed using PubMed, EBSCO and Cochrane Library, from their inception to January 2018. The PRISMA guidelines were followed and the search strategy ensured that all possible studies were identified to compile the review. Inclusion criteria for this review were: 1) Studies that analyzed the SLC12A3 gene in individuals with Type 2 Diabetes and Gitelman Syndrome. 2) Use of at least one analysis investigating the association between the Arg913Gln variation of SLC12A3 gene with diabetic nephropathy. 3) Use of a case–control or follow-up design. 4) Investigation of type 2 diabetes mellitus in individuals with Gitelman’s syndrome, with a history of diabetic nephropathy. Results The included studies comprised 2106 individuals with diabetic nephropathy. This review shows a significant genetic association in most studies in the Arg913Gln variation of SLC12A3 gene with the diabetic nephropathy, pointing out that the mutations of this gene could be a key predictor of end-stage renal disease. Conclusions The results showed in this systematic review contribute to better understanding of the association between the Arg913Gln variation of SLC12A3 gene with the pathogenesis of diabetic nephropathy in individuals with T2DM and GS.


Diabetes Care ◽  
2015 ◽  
Vol 38 (5) ◽  
pp. 883-890 ◽  
Author(s):  
Nicolae M. Panduru ◽  
Markku Saraheimo ◽  
Carol Forsblom ◽  
Lena M. Thorn ◽  
Daniel Gordin ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shinji Kume ◽  
Daisuke Koya ◽  
Takashi Uzu ◽  
Hiroshi Maegawa

Diabetic nephropathy is the leading cause of end-stage renal disease worldwide. The multipronged drug approach still fails to fully prevent the onset and progression of diabetic nephropathy. Therefore, a new therapeutic target to improve the prognosis of diabetic nephropathy is urgently required. Nutrient-sensing signals and their related intracellular machinery have evolved to combat prolonged periods of starvation in mammals; and these systems are conserved in the kidney. Recent studies have suggested that the activity of three nutrient-sensing signals, mTORC1, AMPK, and Sirt1, is altered in the diabetic kidney. Furthermore, autophagy activity, which is regulated by the above-mentioned nutrient-sensing signals, is also altered in both podocytes and proximal tubular cells under diabetic conditions. Under diabetic conditions, an altered nutritional state owing to nutrient excess may disturb cellular homeostasis regulated by nutrient-responsible systems, leading to exacerbation of organelle dysfunction and diabetic nephropathy. In this review, we discuss new findings showing relationships between nutrient-sensing signals, autophagy, and diabetic nephropathy and suggest the therapeutic potential of nutrient-sensing signals in diabetic nephropathy.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Akhilesh Kumar Verma ◽  
Subhash Chandra ◽  
Rana Gopal Singh ◽  
Tej Bali Singh ◽  
Shalabh Srivastava ◽  
...  

Association of oxidative stress and serum prolidase activity (SPA) has been reported in many chronic diseases. The study was aimed at evaluating the correlation of glucose and creatinine to SPA and oxidative stress in patients with diabetic nephropathy (DN) and end stage renal disease (ESRD) concerned with T2DM. 50 healthy volunteers, 50 patients with T2DM, 86 patients with DN, and 43 patients with ESRD were considered as control-1, control-2, case-1, and case-2, respectively. Blood glucose, creatinine, SPA, total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI) were measured by colorimetric tests. SPA, TOS, and OSI were significantly increased in case-1 and case-2 than control-1 and control-2, while TAS was significantly decreased(P<0.001). Blood glucose was linearly correlated to SPA, TOS, TAS, and OSI in control-2, case-1 and case-2(P<0.001). Serum creatinine was linearly correlated with SPA, TOS, TAS and OSI in control-2 and case-1(P<0.001). In case-2, serum creatinine was significantly correlated with SPA only(P<0.001). Thus, the study concluded that SPA and oxidative stress significantly correlated with blood glucose and creatinine. SPA, TOS, TAS, and OSI can be used as biomarkers for diagnosis of kidney damage.


Sign in / Sign up

Export Citation Format

Share Document