Effect of iron-deficiency anemia on hormone levels and thermoregulation during cold exposure

1984 ◽  
Vol 247 (1) ◽  
pp. R114-R119
Author(s):  
J. Beard ◽  
W. Green ◽  
L. Miller ◽  
C. Finch

When exposed to an ambient temperature of 4 degrees C, iron-deficient anemic rats become hypothermic. This lesion is related more to anemia than to tissue iron deficiency, since exchange transfusion to hematocrits over 25 restored normal thermoregulatory performance. Likewise poor cold responses were induced in control rats by transfusion to low hematocrits. Cold sensitivity in all anemic animals was paralleled by poor thyroid responses: there was a significant positive correlation between hematocrit and percent rise in triiodothyronine (r = 0.63) and thyroxine (r = 0.53) during 6 h at 4 degrees C. Basal levels of thyroid-stimulating hormone (TSH) were similar in control and iron-deficient animals: after cold exposure, TSH rose to higher levels in those animals with hematocrits over 25 than in those with lower hematocrits. Diminished O2 delivery to tissues responsible for heat production is probably a major component of the cold sensitivity of anemic rats. The novel finding that thyroid hormone responses are compromised by anemia implies effects on hormonal regulation that may also contribute to this functional lesion.

2017 ◽  
Vol 147 (12) ◽  
pp. 2297-2308 ◽  
Author(s):  
Michael J Wenger ◽  
Laura E Murray-Kolb ◽  
Julie EH Nevins ◽  
Sudha Venkatramanan ◽  
Gregory A Reinhart ◽  
...  

Abstract Background: Iron deficiency and iron deficiency anemia have been shown to have negative effects on aspects of perception, attention, and memory. Objective: The purpose of this investigation was to assess the extent to which increases in dietary iron consumption are related to improvements in behavioral measures of perceptual, attentional, and mnemonic function. Methods: Women were selected from a randomized, double-blind, controlled food-fortification trial involving ad libitum consumption of either a double-fortified salt (DFS) containing 47 mg potassium iodate/kg and 3.3 mg microencapsulated ferrous fumarate/g (1.1 mg elemental Fe/g) or a control iodized salt. Participants' blood iron status (primary outcomes) and cognitive functioning (secondary outcomes) were assessed at baseline and after 10 mo at endline. The study was performed on a tea plantation in the Darjeeling district of India. Participants (n = 126; 66% iron deficient and 49% anemic at baseline) were otherwise healthy women of reproductive age, 18–55 y. Results: Significant improvements were documented for iron status and for perceptual, attentional, and mnemonic function in the DFS group (percentage of variance accounted for: 16.5%) compared with the control group. In addition, the amount of change in perceptual and cognitive performance was significantly (P < 0.05) related to the amount of change in blood iron markers (mean percentage of variance accounted for: 16.0%) and baseline concentrations of blood iron markers (mean percentage of variance accounted for: 25.0%). Overall, there was evidence that the strongest effects of change in iron status were obtained for perceptual and low-level attentional function. Conclusion: DFS produced measurable and significant improvements in the perceptual, attentional, and mnemonic performance of Indian female tea pickers of reproductive age. This trial was registered at clinicaltrials.gov as NCT01032005.


2016 ◽  
pp. 22-28
Author(s):  
Svitlana Gaidukova ◽  
Stanislav Vydyborets

Modern views of epidemiology, etiology and pathogenesis of iron deficiency anemia (IDA) are considered. This review deals with up-to-date methods of the laboratory diagnostics of IDA. Some ideas of iron methabolism in an organism and pathogenetic mechanisms of clinical and laboratory symptomps are briefly presented. The diagnostic value of laboratory methods for diagnosing IDA is interpreted. A conclusion is drawn about the integrated approach to the diagnostics of IDA diagnostics. Causes of low treatment efficiency are discussed and the ways to address this problem are proposed based on the published results of clinical research. Present article devoted to the steps for implementation unified clinical protocol of the primary, secondary (specialized) medical care “Iron deficiency” to the practical activities.


2000 ◽  
pp. 217-223 ◽  
Author(s):  
M Zimmermann ◽  
P Adou ◽  
T Torresani ◽  
C Zeder ◽  
R Hurrell

OBJECTIVE: In developing countries, many children are at high risk for both goiter and iron-deficiency anemia. Because iron deficiency may impair thyroid metabolism, the aim of this study was to determine if iron supplementation improves the response to oral iodine in goitrous, iron-deficient anemic children. DESIGN: A trial of oral iodized oil followed by oral iron supplementation in an area of endemic goiter in the western Ivory Coast. METHODS: Goitrous, iodine-deficient children (aged 6-12 years; n=109) were divided into two groups: Group 1 consisted of goitrous children who were not anemic; Group 2 consisted of goitrous children who were iron-deficient anemic. Both groups were given 200mg oral iodine as iodized oil. Thyroid gland volume using ultrasound, urinary iodine concentration (UI), serum thyroxine (T(4)) and whole blood TSH were measured at baseline, and at 1, 5, 10, 15 and 30 weeks post intervention. Beginning at 30 weeks, the anemic group was given 60mg oral iron as ferrous sulfate four times/week for 12 weeks. At 50 and 65 weeks after oral iodine (8 and 23 weeks after completing iron supplementation), UI, TSH, T(4) and thyroid volume were remeasured. RESULTS: The prevalence of goiter at 30 weeks after oral iodine in Groups 1 and 2 was 12% and 64% respectively. Mean percent change in thyroid volume compared with baseline at 30 weeks in Groups 1 and 2 was -45.1% and -21.8% respectively (P<0.001 between groups). After iron supplementation in Group 2, there was a further decrease in mean thyroid volume from baseline in the anemic children (-34.8% and -38.4% at 50 and 65 weeks) and goiter prevalence fell to 31% and 20% at 50 and 65 weeks. CONCLUSION: Iron supplementation may improve the efficacy of oral iodized oil in goitrous children with iron-deficiency anemia.


PEDIATRICS ◽  
1958 ◽  
Vol 22 (2) ◽  
pp. 258-258

These papers contain much fundamental information concerning the prevention and treatment of iron deficiency anemia in infants and children. Normal children absorb an average of about 10% of the iron in natural foods and commercially-prepared infant cereals supplemented with iron. Daily intake of iron by an infant receiving a diet which includes optimal amounts of iron-containing foods may be sufficient to meet the iron requirements of the first 18 months of life unless the infant is born with suboptimal stores of iron, suffers blood loss or is born prematurely. Such a hypothetical infant is probably not representative of a large segment of the population. The authors suggest that more data is needed on the results of giving adequate supplemental iron during infancy to determine whether the hematologic values in infancy may be made to correspond more closely to adult values. Based on the finding of the previous paper that iron supplementation of the diets of many infants may be desirable, studies were undertaken to evaluate the absorption of iron salts by normal and anemic children. Twelve to fifteen percent of a 30 mg dose of ferrous iron given once or twice a day was absorbed by normal children. Iron deficient infants absorb more ferrous iron than do normal infants. The variability between individuals in absorption of food iron and supplemental iron are discussed along with consideration of the dosage of iron salts to be employed in treatment. The authors state that as no investigations have established the desirability of increasing the normal hematologic values of infants beyond their customary levels of 11 to 13 gm/100 ml, indiscriminate supplementation of normal infants' diets is not recommended. Therapetmtic iron is indicated only if specific evidence of iron deficiency exists and the widespread use of mixtures containing several hematopoietic agents is deplored.


Blood ◽  
1955 ◽  
Vol 10 (6) ◽  
pp. 567-581 ◽  
Author(s):  
DANIEL H. COLEMAN ◽  
ALEXANDER R. STEVENS ◽  
CLEMENT A. FINCH

Abstract In the normal individual the amount of iron absorbed and lost from the body each day is exceedingly small. There are certain periods during life when body iron requirements are increased; the most important of these is infancy. Here, existing iron stores are rapidly depleted, and a deficient diet can soon produce iron deficiency. Once a full complement of body iron has been accrued, the adult is independent of iron intake and becomes iron deficient only through blood loss. In the production of iron deficiency, iron stores are exhausted before anemia appears. If any question in diagnosis from usual laboratory tests exists, the direct. examination of marrow for hemosiderin will establish the diagnosis. It is of obvious importance to confirm the diagnosis by specific therapy and to determine the cause of the iron depletion. Response to oral iron is highly predictable and failure of response usually in dictates a mistaken diagnosis. In a small but significant group of patients, either unable to take iron because of gastrointestinal symptoms, unable to absorb iron, or in need of iron reserves, parenteral administration of iron has distinct advantages. The saccharated oxide of iron is an effective preparation for this purpose.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gorkem Sezgin ◽  
Paul Monagle ◽  
Tze Ping Loh ◽  
Vera Ignjatovic ◽  
Monsurul Hoq ◽  
...  

Abstract Low serum ferritin is diagnostic of iron deficiency, yet its published lower cut-off values are highly variable, particularly for pediatric populations. Lower cut-off values are commonly reported as 2.5th percentiles, and is based on the variation of ferritin values in the population. Our objective was to determine whether a functional approach based on iron deficient erythropoiesis could provide a better alternative. Utilizing 64,443 ferritin test results from pediatric electronic health records, we conducted various statistical techniques to derive 2.5th percentiles, and also derived functional reference limits through the association between ferritin and erythrocyte parameters: hemoglobin, mean corpuscular volume, mean cell hemoglobin concentration, and red cell distribution width. We find that lower limits of reference intervals derived as centiles are too low for clinical interpretation. Functional limits indicate iron deficiency anemia starts to occur when ferritin levels reach 10 µg/L, and are largely similar between genders and age groups. In comparison, centiles (2.5%) presented with lower limits overall, with varying levels depending on age and gender. Functionally-derived limits better reflects the underlying physiology of a patient, and may provide a basis for deriving a threshold related to treatment of iron deficiency and any other biomarker with functional outcomes.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1070-1070
Author(s):  
Brian Sandri ◽  
Gabriele Lubach ◽  
Eric Lock ◽  
Michael Georgieff ◽  
Pamela Kling ◽  
...  

Abstract Objectives To determine whether rapid correction of iron deficiency using intramuscular iron dextran normalizes serum metabolomic changes in a nonhuman primate model of iron deficiency anemia (IDA). Methods Blood was collected from naturally iron-sufficient (IS; n = 10) and IDA (n = 12) male and female infant rhesus monkeys (Macaca mulatta) at 6 months of age. IDA infants were treated with intramuscular injections of iron dextran, 10 mg/weekly for 4–8 weeks. Iron status was reevaluated following treatment using hematological measurements and sera were metabolically profiled using HPLC/MS with isobaric standards for identification and quantification. Results Early-life iron deficiency anemia negatively affects many cellular metabolic processes, including energy production, electron transport, and oxidative degradation of toxins. Slow iron repletion with dietary supplementation restores iron deficient monkeys from a hematological perspective, but the serum metabolomic profile remains differed from monkeys that had been iron sufficient their entire life. Whether rapid iron restoration through intramuscular injections of iron dextran normalizes serum metabolomic profile is not known. A total of 654 metabolites were measured with differences in 53 metabolites identified between IS and IDA monkeys at 6 months (P 0.05). Pathway analyses provided evidence of altered liver function, hypometabolic state, differential essential fatty acid production, irregular inosine and guanosine metabolism, and atypical bile acid production in IDA infants. After treatment, iron-related hematological parameters had recovered, but the formerly IDA infants remained metabolically distinct from the IS infants, with 225 metabolites differentially expressed between the groups. Conclusions As with slow iron repletion, rapid iron repletion does not normalize the altered serum metabolomic profile in rhesus infants with IDA, suggesting the need for iron supplementation in the pre-anemic stage. Funding Sources National Institutes of Health.


Blood ◽  
1976 ◽  
Vol 48 (5) ◽  
pp. 669-677 ◽  
Author(s):  
DR Clarkson ◽  
EM Moore

Abstract Alterations in reticulocyte size occur 2–3 days after the onset of iron deficient or megaloblastic erythropoiesis and precede, by several weeks, changes in mean corpuscular volume (MCV). Iron-deficiency anemia induced in a normal subject by repeated phlebotomies was characterized by the initial development of larger than normal reticulocytes followed by an abrupt decrease in reticulocyte size. Microreticulocytes appeared 3 days after the fall in per cent iron saturation and antedated the decrease in MCV to below normal by 6 wk. Mean reticulocyte size was disproportionately smaller than normal in patients presenting with iron deficiency. In contrast, reticulocyte size increased abruptly in a patient (and rats) 2–3 days after administration of methotrexate. Mean reticulocyte size was disproportionately larger than normal in patients presenting with folate or vitamin B12 deficiency. Specific replacement therapy with iron, folate, or vitamin B12 was quickly followed by normalization of reticulocyte size.


2010 ◽  
Vol 140 (5) ◽  
pp. 1057-1061 ◽  
Author(s):  
Betsy Lozoff ◽  
Rinat Armony-Sivan ◽  
Niko Kaciroti ◽  
Yuezhou Jing ◽  
Mari Golub ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2052-2052
Author(s):  
Eldad A. Hod ◽  
Eric H. Ekland ◽  
Shruti Sharma ◽  
Boguslaw S. Wojczyk ◽  
David A. Fidock ◽  
...  

Abstract Abstract 2052 To clarify the interactions between iron status, oral iron supplementation, and bacterial and malarial infections, we examined iron-replete mice and mice with dietary iron deficiency infected with Salmonella typhimurium, Plasmodium yoelii, or both, with and without oral iron administration. These studies were designed to identify potential mechanisms underlying the increased risk of severe illness and death in children in a malaria-endemic region who received routine iron and folic acid supplementation during a randomized, controlled trial in Pemba, Tanzania (Sazawal et al. Lancet 2006;367:133-43). To this end, weanling C57BL/6 female mice were fed an iron-replete or an iron-deficient diet, the latter of which resulted in severe iron deficiency anemia. Groups of mice were then infected by intraperitoneal injection of Salmonella typhimurium strain LT2, Plasmodium yoelii strain 17X parasites, or both. With Salmonella infection alone, iron-deficient mice had a median survival (7.5 days, N=8) approximately half that of iron-replete mice (13 days, N=10, p<0.0001). At death, the mean level of bacteremia was significantly higher in infected iron-deficient mice. In blood cultures performed at death, all iron-deficient mice were bacteremic, but bacteria were detected in only 4 of 10 iron-replete mice. Both iron-deficient and iron-replete Salmonella-infected mice had gross hepatosplenomegaly with hepatitis, distorted hepatic and splenic architecture, massive expansion of the splenic red pulp with inflammatory cells, and Gram-negative bacilli by tissue Gram stain. With P. yoelii infection alone, iron-deficient and iron-replete mice cleared the infection at similar rates (by ~13 days following infection, N=5 in each group) and no deaths due to parasitemia occurred. With Salmonella and P. yoelii co-infection, death was earlier than with Salmonella alone in iron-replete mice (median survival of 10 vs. 13 days; N=10 in each group; p=0.005), but not in iron-deficient mice (median survival of 7 vs. 7.5 days; N=10 and 8, respectively; p=0.8). To examine the effect of short-term oral iron supplementation with Salmonella infection alone, mice received daily iron (ferrous sulfate, 1 mg/kg) by gavage for 4 days before infection with Salmonella, and supplementation continued for a total of 10 days. After gavage, plasma non-transferrin-bound iron (NTBI) appeared at 1–2 hours with a mean peak level of approximately 5 μM. In iron-deficient mice, short-term oral iron supplementation did not fully correct the iron deficiency anemia or replenish iron stores. Oral iron supplementation reduced the median survival of both iron-deficient and iron-replete Salmonella-infected mice by approximately 1 day; the difference was significant only in the iron-replete group (N=5, p<0.05). In summary, these results indicate that iron deficiency decreases the survival of Salmonella-infected mice; the median survival of iron-deficient mice was approximately half that of those that were iron replete. These observations are similar to those in the Pemba sub-study in which iron-deficient children given placebo had a 200% increase in the risk of adverse events relative to iron-replete children. Iron deficiency had no apparent effect on the course of infection with P. yoelii but further studies with more virulent Plasmodium species are needed. Co-infection with Salmonella and Plasmodium significantly increased mortality as compared to single infections, but only in iron-replete mice. Oral iron supplementation of Salmonella-infected mice significantly decreased the median survival, but only of iron-replete animals; however, our study may have had insufficient power to detect an effect on iron-deficient mice. Systematic examination in mice of the effect of iron supplements on the severity of malarial and bacterial infection in iron-replete and iron-deficient states may ultimately help guide the safe and effective use of iron interventions in humans in areas with endemic malaria. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document