Electrophysiological and morphological characterization of neurons in stellate ganglion of cats

1985 ◽  
Vol 248 (3) ◽  
pp. R288-R292 ◽  
Author(s):  
Z. J. Bosnjak ◽  
J. P. Kampine

We have studied the general morphology of cat stellate ganglion cells in relation to the synaptic input that each neuron receives. Horseradish peroxidase (HRP) was injected intracellularly into single neurons of the isolated cat stellate ganglia. Neurons of the stellate ganglion receive synaptic information from central and peripheral nerves. Electrical stimulation of the preganglionic nerves (T3 ramus), and postganglionic stimulation of the ventral or dorsal ansa subclavia, evoked graded excitatory responses that led to the discharge of one or more action potentials. The neurons receiving synaptic input from preganglionic and postganglionic nerves have a complex dendritic morphology. These neurons were located close to the postganglionic nerves and had an axon emerging from these nerves. Other neurons located closer to the preganglionic nerves had no identifiable axons leaving the ganglion and could not be excited antidromically by electrical stimulation. These neurons appear to be interneurons. These results indicate that neurons of the cat stellate ganglion are organized in a complex fashion that could be important in the integrative properties of these neurons.

1982 ◽  
Vol 242 (3) ◽  
pp. R237-R243
Author(s):  
Z. J. Bosnjak ◽  
J. L. Seagard ◽  
J. P. Kampine

In vitro and in vivo studies were conducted on the stellate ganglion (SG) of the dog by recording action potentials from its nerves and its neurons. For in vitro preparations, the SG and its nerve trunks were dissected from the animal and secured in an organ bath. Peripheral input to the SG was produced by electrical stimulation of the ventral ansa subclavia (VA), dorsal ansa subclavia (DA), and stellate cardiac nerve (SC) in 15 ganglion preparations studied in vitro. Electrical stimulation of the VA elicited action potentials recorded at the DA. This conducting pathway did not involve direct anatomic continuity, since the evoked potentials were blocked by injection of hexamethonium chloride into the SG. Most neurons in the SG received synaptic input from fibers of both central and peripheral origin. In 12 in vivo preparations, all nerves to the SG except the VA were cut. When peripheral sympathetic afferent input to the SG was increased, some of the postganglionic fibers of the dissected DA exhibited an increase in efferent nerve discharge. This response was also blocked by hexamethonium chloride. These results indicate that some of the functions of the SG might be independent of the central nervous system.


1994 ◽  
Vol 266 (6) ◽  
pp. H2404-H2409 ◽  
Author(s):  
F. Peronnet ◽  
G. Boudreau ◽  
J. de Champlain ◽  
R. Nadeau

Plasma norepinephrine (NE) concentration ([NE]) gradient across the heart was measured under electrical stimulation of the left stellate ganglion (LSG; 4 Hz, 4 V, 2 ms pulse width, 1 min) in control (Ctrl) and in adrenalectomized (Adrx) dogs, without and with a 10-min epinephrine (Epi) infusion (92 ng.kg-1.min-1), which partly restored myocardial Epi stores in Adrx dogs (2.9 +/- 0.7 ng/g vs. 6.4 +/- 0.7 ng/g in Ctrl dogs) and slightly increased tissue Epi stores in Ctrl dogs (10.5 +/- 1.3 pg/g). Compared with Ctrl dogs (1,069 +/- 172 pg/ml), the [NE] gradient across the heart under stimulation of the LSG was not modified 1 wk after bilateral adrenalectomy (1,190 +/- 122 pg/ml) or after Epi infusion in Ctrl (1,134 +/- 276 pg/ml) and Adrx (1,259 +/- 279 pg/ml) dogs. The beta 2-antagonist ICI-118,551 significantly reduced the stimulation-induced [NE] gradient across the heart in Ctrl dogs (621 +/- 190 and 603 +/- 86 pg/ml without and with a 10-min Epi infusion, respectively) but not in Adrx dogs deprived of tissue Epi (1,345 +/- 345 pg/ml). Partial repletion of myocardial Epi stores in Adrx dogs restored the effect of ICI-118,551 on the stimulation-induced [NE] gradient (776 +/- 121 pg/ml). These results provide direct support of the hypothesis that tissue Epi, which originates from the adrenal medulla and which is released locally along with NE, is the endogenous agonist for presynaptic beta 2-receptors and potentiates NE release.


2012 ◽  
Vol 107 (10) ◽  
pp. 2742-2755 ◽  
Author(s):  
Max Eickenscheidt ◽  
Martin Jenkner ◽  
Roland Thewes ◽  
Peter Fromherz ◽  
Günther Zeck

Electrical stimulation of retinal neurons offers the possibility of partial restoration of visual function. Challenges in neuroprosthetic applications are the long-term stability of the metal-based devices and the physiological activation of retinal circuitry. In this study, we demonstrate electrical stimulation of different classes of retinal neurons with a multicapacitor array. The array—insulated by an inert oxide—allows for safe stimulation with monophasic anodal or cathodal current pulses of low amplitude. Ex vivo rabbit retinas were interfaced in either epiretinal or subretinal configuration to the multicapacitor array. The evoked activity was recorded from ganglion cells that respond to light increments by an extracellular tungsten electrode. First, a monophasic epiretinal cathodal or a subretinal anodal current pulse evokes a complex burst of action potentials in ganglion cells. The first action potential occurs within 1 ms and is attributed to direct stimulation. Within the next milliseconds additional spikes are evoked through bipolar cell or photoreceptor depolarization, as confirmed by pharmacological blockers. Second, monophasic epiretinal anodal or subretinal cathodal currents elicit spikes in ganglion cells by hyperpolarization of photoreceptor terminals. These stimuli mimic the photoreceptor response to light increments. Third, the stimulation symmetry between current polarities (anodal/cathodal) and retina-array configuration (epi/sub) is confirmed in an experiment in which stimuli presented at different positions reveal the center-surround organization of the ganglion cell. A simple biophysical model that relies on voltage changes of cell terminals in the transretinal electric field above the stimulation capacitor explains our results. This study provides a comprehensive guide for efficient stimulation of different retinal neuronal classes with low-amplitude capacitive currents.


1988 ◽  
Vol 118 (3) ◽  
pp. 471-483 ◽  
Author(s):  
L. M. Voloschin ◽  
E. Décima ◽  
J. H. Tramezzani

ABSTRACT Electrical stimulation of the XIII thoracic nerve (the 'mammary nerve') causes milk ejection and the release of prolactin and other hormones. We have analysed the route of the suckling stimulus at the level of different subgroups of fibres of the teat branch of the XIII thoracic nerve (TBTN), which innervates the nipple and surrounding skin, and assessed the micromorphology of the TBTN in relation to lactation. There were 844 ± 63 and 868 ± 141 (s.e.m.) nerve fibres in the TBTN (85% non-myelinated) in virgin and lactating rats respectively. Non-myelinated fibres were enlarged in lactating rats; the modal value being 0·3–0·4 μm2 for virgin and 0·4–0·5 μm2 for lactating rats (P > 0·001; Kolmogorov–Smirnov test). The modal value for myelinated fibres was 3–6 μm2 in both groups. The compound action potential of the TBTN in response to electrical stimulation showed two early volleys produced by the Aα- and Aδ-subgroups of myelinated fibres (conduction velocity rate of 60 and 14 m/s respectively), and a late third volley originated in non-myelinated fibres ('C') group; conduction velocity rate 1·4 m/s). Before milk ejection the suckling pups caused 'double bursts' of fibre activity in the Aδ fibres of the TBTN. Each 'double burst' consisted of low amplitude action potentials and comprised two multiple discharges (33–37 ms each) separated by a silent period of around 35 ms. The 'double bursts' occurred at a frequency of 3–4/s, were triggered by the stimulation of the nipple and were related to fast cheek movements visible only by watching the pups closely. In contrast, the Aα fibres of the TBTN showed brief bursts of high amplitude potentials before milk ejection. These were triggered by the stimulation of cutaneous receptors during gross slow sucking motions of the pup (jaw movements). Immediately before the triggering of milk ejection the mother was always asleep and a low nerve activity was recorded in the TBTN at this time. When reflex milk ejection occurred, the mother woke and a brisk increase in nerve activity was detected; this decreased when milk ejection was accomplished. In conscious rats the double-burst type of discharges in Aδ fibres was not observed, possibly because this activity cannot be detected by the recording methods currently employed in conscious animals. During milk ejection, action potentials of high amplitude were conveyed in the Aα fibres of the TBTN. During the treading time of the stretch reaction (SR), a brisk increase in activity occurred in larger fibres; during the stretching periods of the SR a burst-type discharge was again observed in slow-conducting afferents; when the pups changed nipple an abrupt increase in activity occurred in larger fibres. In summary, the non-myelinated fibres of the TBTN are increased in diameter during lactation, and the pattern of suckling-evoked nerve activity in myelinated fibres showed that (a) the double burst of Aδ fibres, produced by individual sucks before milk ejection, could be one of the conditions required for the triggering of the reflex, and (b) the nerve activity displayed during milk-ejection action may result, at least in part, from 'non-specific' stimulation of cutaneous receptors. J. Endocr. (1988) 118, 471–483


2019 ◽  
Vol 486 (2) ◽  
pp. 258-261
Author(s):  
L. E. Petrovskaya ◽  
M. V. Roshchin ◽  
G. R. Smirnova ◽  
D. E. Kolotova ◽  
P. M. Balaban ◽  
...  

For the purpose of optogenetic prosthetics of the receptive field of the retinal ganglion cell, we have created a bicistronic genetic construct that carries genes of excitatory (channelorhodopsin2) and inhibitory (anionic channelorhodopsin) rhodopsins. A distinctive feature of this construct is the combination of two genes into one construct with the mutant IRES inserted between them, which ensures precise ratio of the expression levels of the first and second gene in each transfected cell. It was found that the illumination of the central part of transfected neuron with light with a wavelength of 470 nm causes the generation of action potentials in the cell. At the same time, light stimulation of the periphery of the neuron causes cessation of the generation of action potentials. Thus, we were able to simulate the ON-OFF interaction of the receptive field of the retinal ganglion cell using optogenetic methods. Theoretically, this construction can be used for optogenetic prosthetics of degenerative retina in case of its delivery to ganglion cells using lentiviral vectors.


1984 ◽  
Vol 246 (3) ◽  
pp. R354-R358
Author(s):  
Z. J. Bosnjak ◽  
J. P. Kampine

In vitro studies were conducted on the middle cervical ganglion (MCG) of the cat by recording intracellular action potentials from its neurons. The purpose of this study was to examine the possibility of a peripheral synaptic input to the MCG. Preganglionic electrical stimulation, via the ventral ansa (VA) and dorsal ansa (DA) subclavia, and post-ganglionic electrical stimulation, via the ventrolateral cardiac nerve (VCN), evoked graded synaptic responses that led to the discharge of one or more action potentials in the 14 ganglia studied. The conduction velocity of these pathways ranged from 0.4 to 0.9 m/s. Ten percent of the cells impaled were inexcitable, even with direct intracellular depolarizing current, whereas 80% of the neurons studied received a synaptic input from fibers of both central and peripheral origin. In addition, subthreshold synaptic inputs from peripheral and central origin sum to discharge the cell, suggesting an integration of neural inputs in the MCG. These responses were blocked by d-tubocurarine chloride. This evidence indicates that sympathetic efferent nerve activity can be modified by peripheral excitatory inputs and that these inputs may function as pathways for a peripheral reflex at the level of the MCG.


1996 ◽  
Vol 271 (6) ◽  
pp. R1481-R1488
Author(s):  
K. Kihara ◽  
H. Kakizaki ◽  
W. C. de Groat

Reorganization of autonomic efferent pathways to the rat vas deferens was noted after chronic (30 days) sympathetic decentralization produced by hypogastric nerve (HGN) transection. In normal rats, electrical stimulation of the HGN elicited an increase in vasal pressure (VP) bilaterally, whereas pelvic nerve (PN) stimulation did not alter VP. However, after unilateral HGN transection, stimulation of the PN on the transected side but not on the normal side increased VP. The decentralized vas exhibited larger VP responses to stimulation of the contralateral HGN in comparison with the normal vas. After bilateral HGN transection, PN-induced VP responses were elicited at lower stimulus intensities than in rats with unilateral transections. PN-induced VP responses were blocked by hexamethonium and prazosin but were not altered by atropine. Distension of the vas lumen occurred after decentralization. PN-induced VP responses were not detectable in extremely distended vas. These data indicate that, after degeneration of sympathetic preganglionic axons, decentralized adrenergic ganglion cells are reinnervated by parasympathetic or sympathetic preganglionic pathways and that the reinnervation influences vasal function.


Sign in / Sign up

Export Citation Format

Share Document