Oxidative and glycolytic pathways in rat (newborn and adult) and turtle brain: role during anoxia

1992 ◽  
Vol 262 (4) ◽  
pp. R595-R603 ◽  
Author(s):  
Y. Xia ◽  
C. Jiang ◽  
G. G. Haddad

Using enzyme histochemistry and in vitro electrophysiological recordings in brain slices, we studied 1) the relative activity of cytochrome c oxidase (Cytox) and hexokinase (HK) and 2) cellular function by examining ionic homeostasis across cell membranes in the turtle and newborn (5 days old) and adult rat central nervous system. We found that Cytox was higher in the rostral than in the caudal brain regions of the adult rat and that the activity in the newborn is at least as high as in the adult rat. In contrast, adult turtles had very low Cytox activity throughout the central nervous system. Compared with that in the adult rat, HK activity in the newborn was generally lower in the rostral brain and cerebellum but similar or higher in the brain stem and spinal cord. In the turtle, HK activity was higher in the cerebellum, brain stem, and ventral horn of the spinal cord than in those in the rat. During anoxia, extracellular K+ increased by approximately 10-fold (from 3.2 to approximately 32 mM) in the adult brain stem but only by 2.6 mM in newborn rats. After glycolysis was blocked with iodoacetic acid (10-20 mM), extracellular K+ increased remarkably in both adult and newborn rats to approximately 35 mM. In contrast, the turtle brain tissue showed a slight and insignificant increase in extracellular K+ during complete anoxia or with iodoacetic acid; there was a modest increase in K+ when anoxia and iodoacetate were administered together. We conclude that 1) the newborn rat brain must rely either on higher glycolytic capacity or on a reduction of metabolic rate during O2 deprivation and 2) the turtle brain can subsist on nonglucose fuels or on fuels not requiring the citric acid cycle and the electron transfer chain.

1989 ◽  
Vol 1 (3-4) ◽  
pp. 105-112 ◽  
Author(s):  
Terry W. Moody ◽  
Reina L. Getz ◽  
William J. Goldberg ◽  
Jerald J. Bernstein

Neuropeptide receptors were visualized in homografts of fetal cortex (E14) into adult rat cortex (immediate or 7 day delay) and spinal cord usingin vitroautoradiographic techniques to explore the expression of peptide receptors in the same graft tissue in different central nervous system implantation sites. Receptors for bombesin (BN)-like peptides developed in the grafts by 3 weeks postimplantation regardless of location or age of implantation pocket in host. After 4 weeks, the density of BN receptors was confined to the graft. In grafts to spinal cord, however, high densities of BN-like receptors were not confined to the graft but were distributed throughout the spinal cord. In contrast, the density of vasoactive intestinal polypeptide (VIP) and substance P (SP) receptors was moderate and low to undetectable in the fetal grafts. The development of the peptide receptors studied was graft donor tissue specific since they were not altered by central nervous system implantation site.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1301-1309 ◽  
Author(s):  
R. Tuttle ◽  
W.D. Matthew

Neurons can be categorized in terms of where their axons project: within the central nervous system, within the peripheral nervous system, or through both central and peripheral environments. Examples of these categories are cerebellar neurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons, respectively. When explants containing one type of neuron were placed between cryosections of neonatal or adult sciatic nerve and neonatal spinal cord, the neurites exhibited a strong preference for the substrates that they would normally encounter in vivo: cerebellar neurites generally extended only on spinal cord, sympathetic neurites on sciatic nerve, and DRG neurites on both. Neurite growth from DRG neurons has been shown to be stimulated by neurotrophins. To determine whether neurotrophins might also affect the substrate preferences of neurites, DRG were placed between cryosections of neonatal spinal cord and adult sciatic nerve and cultured for 36 to 48 hours in the presence of various neurotrophins. While DRG cultured in NGF-containing media exhibited neurite growth over both spinal cord and sciatic nerve substrates, in the absence of neurotrophins DRG neurites were found almost exclusively on the CNS cryosection. To determine whether these neurotrophin-dependent neurite patterns resulted from the selective survival of subpopulations of DRG neurons with distinct neurite growth characteristics, a type of rescue experiment was performed: DRG cultured in neurotrophin-free medium were fed with NGF-containing medium after 36 hours in vitro and neurite growth examined 24 hours later; most DRG exhibited extensive neurite growth on both peripheral and central nervous system substrates.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hannah N. Robeson ◽  
Hayley R. Lau ◽  
Laura A. New ◽  
Jasmin Lalonde ◽  
John N. Armstrong ◽  
...  

Abstract Background Mammalian Shc (Src homology and collagen) proteins comprise a family of four phosphotyrosine adaptor molecules which exhibit varied spatiotemporal expression and signaling functions. ShcD is the most recently discovered homologue and it is highly expressed in the developing central nervous system (CNS) and adult brain. Presently however, its localization within specific cell types of mature neural structures has yet to be characterized. Results In the current study, we examine the expression profile of ShcD in the adult rat CNS using immunohistochemistry, and compare with those of the neuronally enriched ShcB and ShcC proteins. ShcD shows relatively widespread distribution in the adult brain and spinal cord, with prominent levels of staining throughout the olfactory bulb, as well as in sub-structures of the cerebellum and hippocampus, including the subgranular zone. Co-localization studies confirm the expression of ShcD in mature neurons and progenitor cells. ShcD immunoreactivity is primarily localized to axons and somata, consistent with the function of ShcD as a cytoplasmic adaptor. Regional differences in expression are observed among neural Shc proteins, with ShcC predominating in the hippocampus, cerebellum, and some fiber tracts. Interestingly, ShcD is uniquely expressed in the olfactory nerve layer and in glomeruli of the main olfactory bulb. Conclusions Together our findings suggest that ShcD may provide a distinct signaling contribution within the olfactory system, and that overlapping expression of ShcD with other Shc proteins may allow compensatory functions in the brain.


Neurosurgery ◽  
1988 ◽  
Vol 22 (4) ◽  
pp. 691-693 ◽  
Author(s):  
Luis A. Rodriguez ◽  
Michael Prados ◽  
Dorcas Fulton ◽  
Michael S. B. Edwards ◽  
Pamela Silver ◽  
...  

Abstract Twenty-one patients with recurrent malignant central nervous system gliomas were treated with a combination of 5-fluorouracil, CCNU, hydroxyurea, and 6-mercaptopurine. Thirteen patients had brain stem gliomas, 3 patients had spinal cord gliomas, 3 patients had thalamic gliomas, and 2 patients had cerebellar astrocytomas. All patients had received radiation therapy, and 4 brain stem patients had also been treated with chemotherapy. Sixteen patients (76%) responded to treatment with either stabilization of disease or improvement. Nine of the 13 patients with brain stem gliomas (71%) had response or stabilization of disease. The median time to tumor progression (TTP) for the brain stem patients who responded or had stabilization of disease was 25 weeks. The median survival from recurrence for the brain stem glioma patients was 27 weeks. Patients with cerebellar, thalamic, and spinal cord tumors did very well, with an 87% response or stabilization of disease and a median TTP of 122 weeks.


1990 ◽  
Vol 111 (5) ◽  
pp. 2089-2096 ◽  
Author(s):  
S J Small ◽  
R Akeson

During development of the rat central nervous system, neural cell adhesion molecule (NCAM) mRNAs containing in the extracellular domain a 30-bp alternative exon, here named VASE, replace RNAs that lack this exon. The presence of this alternative exon between previously described exons 7 and 8 changes the predicted loop structure of the derived polypeptide from one resembling an immunoglobulin constant region domain to one resembling an immunoglobulin variable domain. This change could have significant effects on NCAM polypeptide function and cell-cell interaction. In this report we test multiple rat tissues for the presence of additional alternative exons at this position and also examine the regulation of splicing of the previously described exon. To sensitively examine alternative splicing, polymerase chain reactions (PCRs) with primers flanking the exon 7/exon 8 alternative splicing site were performed. Four categories of RNA samples were tested for new exons: whole brain from embryonic day 11 to adult, specific brain regions dissected from adult brain, clonal lines of neural cells in vitro, and muscle cells and tissues cultured in vitro and obtained by dissection. Within the limits of the PCR methodology, no evidence for any alternative exon other than the previously identified VASE was obtained. The regulation of expression of this exon was found to be complex and tissue specific. Expression of the 30-bp exon in the heart and nervous system was found to be regulated independently; a significant proportion of embryonic day 15 heart NCAM mRNAs contain VASE while only a very small amount of day 15 nervous system mRNAs contain VASE. Some adult central nervous system regions, notably the olfactory bulb and the peripheral nervous system structures adrenal gland and dorsal root ganglia, express NCAM which contains very little VASE. VASE is undetectable in NCAM PCR products from the olfactory epithelium. Other nervous system regions express significant quantities of NCAM both with and without VASE. Clonal cell lines in culture generally expressed very little VASE. These results indicate that a single alternative exon, VASE, is found in NCAM immunoglobulin-like loop 4 and that distinct tissues and nervous system regions regulate expression of VASE independently both during development and in adult animals.


Development ◽  
1973 ◽  
Vol 30 (2) ◽  
pp. 449-458
Author(s):  
A. Jurand

Teratogenic activity of methadone HCl (Physeptone, Burroughs Wellcome and Co.) was tested on inbred JBT/Jd and outbred Q strain mouse embryos and on chick embryos. 22–24 mg/kg injected subcutaneously on the 9th day of pregnancy caused by the 13th day exencephaly in 56 out of 479 JBT/Jd embryos but after 32 mg/kg only in 1 out of 220 of the Q strain. Some affected JBT/Jd embryos showed also rachischisis in the cervical area. The second abnormality shown by the embryos of both strains is Z-shaped kinkage of the spinal cord. In explanted chick embryos cultured in vitro as well as in embryos treated in ovo methadone causes non-closure of the neural tube with extensive necrosis of the neural plate cells in the cephalic region. The results of this study indicate that methadone, which is a neutropic drug, has an embryotoxic activity directed against the developing central nervous system.


Sign in / Sign up

Export Citation Format

Share Document