Kinetic heterogeneity of Na-D-glucose cotransport in teleost gastrointestinal tract

1992 ◽  
Vol 263 (5) ◽  
pp. R1018-R1023 ◽  
Author(s):  
G. A. Ahearn ◽  
R. D. Behnke ◽  
V. Zonno ◽  
C. Storelli

D-[3H]glucose transport properties of brush-border membrane vesicles (BBMV) of upper intestine and pyloric ceca of the Pacific copper rockfish (Sebastes caurinus) were characterized and compared. Vesicles from both organs exhibited Na-dependent, phloridzin-sensitive, carrier-mediated transport systems. Kinetic constants for D-[3H]glucose influx across vesicle membranes were as follows: upper intestine, apparent affinity of glucose (Kt) = 0.14 +/- 0.02 mM, maximal glucose influx (JM) = 1,649 +/- 57 pmol.mg protein-1.10 s-1; pyloric ceca, Kt = 0.58 +/- 0.12 mM, JM = 2,439 +/- 178 pmol.mg protein-1.10 s-1. A hyperbolic relationship, following Michaelis-Menten kinetics, occurred between D-glucose influx and external Na concentration for pyloric ceca, while a sigmoidal function, following Hill cooperativity kinetics (n = 1.71 +/- 0.31), was disclosed between the variables for the intestine. External phloridzin, D-glucose, methyl alpha-D-glucopyranoside, and D-galactose were the most potent inhibitors of D-[3H]glucose influx in each organ. Other compounds were generally more inhibitory in vesicles from the pyloric cecum than those of the intestine except for D-mannose which was considerably more potent in the intestine. Results suggest that there may be proximal-to-distal hexose- and Na-binding gradients in the teleost gut for optimizing sugar absorption during passage of food through the gastrointestinal tract.

1991 ◽  
Vol 260 (3) ◽  
pp. G457-G463 ◽  
Author(s):  
M. Moreto ◽  
C. Amat ◽  
A. Puchal ◽  
R. K. Buddington ◽  
J. M. Planas

We examined the characteristics of amino acid and sugar absorption by the proximal cecum (PC) of chickens during posthatch development. Rates of absorption of L-proline (Pro) and alpha-methyl-D-glucoside (MG) were measured at 2 days, 5 wk, and 13 wk after hatch with an in vitro everted-sleeve method. For each age, pieces of PC and midjejunum were incubated in solutions containing 0.1-50 mM Pro or MG, and the active and passive components of Pro and MG absorption were determined. Five conclusions may be stated. 1) There are two carrier-mediated transport systems for Pro in the PC: a higher capacity Na(+)-dependent system (Vmax between 1.6 and 3.2 nmol.mg-1.min-1), and a lower capacity Na(+)-independent system (Vmax 0.3-0.8 nmol.mg-1.min-1). 2) Whereas both Pro transport systems are present in the PC at 5 and 13 wk, only the Na(+)-dependent system was found at 2 days. Although rates of transport per milligram tissue by the Na(+)-dependent system fell during development, when rates were normalized to nominal surface area, Vmax was significantly higher in the 5-wk-old group than in the other groups. 3) MG transport is by a Na(+)-dependent system. Vmax values (nmol.mg-1.min-1) were 0.32 (2 days), less than 0.43 (5 wk), and = 0.55 (13 wk). These differences were not affected by normalization to surface area. 4) Because at physiological concentrations passive influx of Pro and MG would be negligible, absorption of amino acids and sugars by the PC would be dependent on the presence of carrier-mediated systems.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 258 (5) ◽  
pp. F1203-F1210 ◽  
Author(s):  
C. W. Lee ◽  
C. I. Cheeseman ◽  
S. M. Jarvis

The uptake of uridine into rat renal brush-border membrane vesicles is mediated by Na(+)- and K(+)-dependent concentrative transport processes. At a 100 mM extravesicular cation concentration the apparent Km values were 9.7 +/- 4.2 and 28 +/- 5 microM, and Vmax values were 28 +/- 4 and 7 +/- 1 pmol.mg protein-1.s-1 for the Na(+)- and K(+)-dependent systems, respectively. Uracil, D-ribose, and D-glucose failed to inhibit the uptake processes, indicating that these carriers are specific for nucleosides. Other purines and pyrimidines inhibited uridine uptake competitively, although these two transport systems seem to favor adenosine and pyrimidines as permeants. Evidence is also given that transport is rheogenic, involving a net transfer of positive charge. The Na+:uridine and K+:uridine coupling stoichiometry was found to be 1:1 and 3:2, respectively. Both systems can also be driven by an anion gradient with apparent NO3- affinity (KNO3-) values of 42 +/- 13 and 163 +/- 54 mM for Na(+)- and K(+)-dependent systems, respectively.


1989 ◽  
Vol 256 (3) ◽  
pp. G618-G623 ◽  
Author(s):  
J. M. Harig ◽  
J. A. Barry ◽  
V. M. Rajendran ◽  
K. H. Soergel ◽  
K. Ramaswamy

This study utilized intestinal brush-border membrane vesicles obtained from organ donor intestine to characterize the absorption of D-glucose and L-leucine in the human intestine. Both D-glucose and L-leucine were taken up by sodium gradient-dependent active transport along the entire length of the small intestine. The relative magnitude of transport for both substrates under sodium gradient conditions followed the order distal jejunum greater than proximal jejunum greater than distal ileum. The number of carrier systems in these brush-border membrane vesicles was estimated by Eadie-Hofstee plot analysis. This analysis revealed that L-leucine was actively transported via a single high-affinity transport system for the length of the human small intestine. In contrast, the transport of D-glucose occurred via a high-affinity system along the length of the intestine and via a low-affinity, high-flux transport system that was limited to the proximal intestine. Both glucose transport systems were sodium dependent and phlorizin sensitive. The locations and apparent kinetic parameters of these transport systems indicated that these systems function efficiently in vivo as important mechanisms for carbohydrate and protein assimilation in humans. The presence of these active transport systems along the entire small intestine explains the formidable capacity for carbohydrate and protein assimilation in humans.


1987 ◽  
Vol 253 (5) ◽  
pp. G637-G642 ◽  
Author(s):  
K. Lawless ◽  
D. Maenz ◽  
C. Cheeseman

The transport of the dibasic amino acid L-lysine was investigated using basolateral membrane vesicles prepared from rat jejunal mucosal scrapings. The majority of the carrier-mediated transport was unaffected by the presence of sodium in the incubation medium, but voltage clamping of the vesicles did increase lysine uptake, indicating an associated movement of charge. Kinetic analysis of lysine influx and efflux showed the system to be symmetrical, but although the Vmax was comparable to other amino acid transport systems in this membrane, the dissociation constant for the overall reaction (KT) was an order of magnitude larger. This low affinity for lysine would explain the relatively slow rate of transport of this amino acid across the basolateral membrane. Competition experiments indicated that this system has a relatively narrow specificity carrying only lysine, arginine, ornithine, and histidine. In contrast the presence of L-leucine caused a marked stimulation of lysine efflux and influx across the vesicles. This effect was observed with leucine concentrations as low as 0.1 microM. It is concluded that although the lysine transport system in the basolateral membrane is slow in its basal state it can be rapidly turned on by the presence of L-leucine. The remarkably low concentrations required to do this suggest a possible allosteric interaction between the transporter and this neutral amino acid.


1981 ◽  
Vol 194 (2) ◽  
pp. 443-449 ◽  
Author(s):  
P D McNamara ◽  
L M Pepe ◽  
S Segal

Uptake of L-cystine by brush-border membrane vesicles isolated from rat renal-cortical tissue was time-dependent and occurred in the absence of cystine reduction. A significant capacity for vesicular binding of cystine was observed. The amount bound increased with time of incubation and could be displaced by thiol reagents. At early time points, cystine uptake measured the transport of cystine into the intravesicular space. Total cystine uptake was mediated by multiple transport systems, including a low-Km high-affinity component which was shared by lysine, arginine, ornithine and glutamine and on which hetero-exchange diffusion of lysine and cystine was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document