Volume-activated K+ and Cl- pathways of dissociated eccrine clear cells

1993 ◽  
Vol 265 (5) ◽  
pp. R990-R1000 ◽  
Author(s):  
G. Samman ◽  
M. Ohtsuyama ◽  
F. Sato ◽  
K. Sato

In isolated rhesus eccrine clear cells, regulatory volume decrease (RVD) occurs after osmotic swelling. RVD was completely inhibited by 1 mM quinidine, 200 nM charybdotoxin, 1 mM diphenylamine-2-carboxylic acid (DPC), or 0.1 mM 4-nitro-2(3-phenylpropyl-amino)benzoate. RVD was also inhibited in Ca(2+)-free medium by vinblastine (antimicrotubular agent), N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide (W-7), or 0.1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Valinomycin reversed quinidine- and DIDS-induced inhibition of RVD but not the inhibition caused by Ca(2+)-free medium, DPC, vinblastine, or W-7. The cytosolic free Ca2+ concentration, as determined by the fura 2 method, increased from 220 nM in the control to 435 nM during RVD. Activation of both K+ and Cl-currents was also directly demonstrated with the whole cell current-voltage clamp method. DIDS inhibited swelling-induced K+, but not Cl-, currents and depolarized the membrane potential during RVD, further supporting the notion that DIDS inhibited swelling-activated K+, but not Cl-, pathways. We conclude that the observed RVD is mediated by the activation of conductive Ca(2+)-dependent K+ and Cl- pathways.

1990 ◽  
Vol 258 (5) ◽  
pp. C827-C834 ◽  
Author(s):  
A. Rothstein ◽  
E. Mack

Osmotic swelling of dissociated Madin-Darby canine kidney (MDCK) cells in NaCl medium is followed by shrinking (regulatory volume decrease, or RVD) or in KCl medium by secondary swelling. The cation ionophore gramicidin has little effect on volumes of isotonic cells but accelerates volume-activated changes in either medium. Immediately after hypotonic exposure, the membrane becomes transiently hyperpolarized followed by depolarization. The depolarization phase is diminished by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Swelling is also associated with an almost immediate increase in Ca2+ influx and elevation of cytoplasmic Ca2+ ([Ca2+]i) preceding RVD. In Ca2(+)-free medium, [Ca2+]i rapidly declines to a low level. Osmotic swelling, under these circumstances, is associated with a small transient increase in [Ca2+]i, but RVD or secondary swelling (in KCl) are minimal. Under these conditions, addition of gramicidin or the Ca2(+)-ionophore A23187 induces significant volume changes, although not as large as those found in the presence of Ca2+. Quinine inhibits RVD in the absence of gramicidin, but not in its presence; oligomycin C, DIDS, and trifluoperazine, on the other hand, inhibit in the presence of the ionophore. These findings suggest that in MDCK cells RVD involves activation of distinct conductive K+ and Cl- pathways which allow escape of KCl and osmotically obligated water and that activation of both pathways is associated with elevated [Ca2+]i derived largely from volume activation of a Ca2(+)-influx pathway.


1994 ◽  
Vol 267 (4) ◽  
pp. C1057-C1066 ◽  
Author(s):  
K. R. Hallows ◽  
D. Restrepo ◽  
P. A. Knauf

Intracellular pH (pHi) homeostasis was investigated in human promyelocytic leukemic HL-60 cells as they undergo regulatory volume decrease (RVD) in hypotonic media to determine how well pHi is regulated and which transport systems are involved. Cells suspended in hypotonic (50-60% of isotonic) media undergo a small (< 0.2 pH units), but significant (P < 0.05), intracellular acidification within 5 min. However, after 30 min of RVD, pHi is not significantly different from the initial pHi in 20 mM HCO3- medium and is significantly higher in HCO3(-)-free medium. Experiments performed in media with or without 150 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and HCO3- demonstrate that the anion exchanger (AE) mediates a net Cl- influx, with compensating HCO3- efflux, during RVD. To determine which transport systems are involved in counteracting this tendency toward acidification, we measured transport rates and examined the effect of transport system inhibitors on pHi. We found that inhibition of Na+/H+ exchange (NHE) with 12.5 microM ethylisoproplamiloride (EIPA) causes pHi to fall significantly by the end of 30 min of RVD. As assessed by EIPA-sensitive 22Na+ uptake measurements, NHE, largely dormant under resting isotonic conditions, becomes significantly activated by the end of 30 min of RVD, despite recovery of pHi and cell volume to near-normal levels. Thus a shift in the normal pHi dependence and/or volume dependence of NHE activity must occur during RVD under hypotonic conditions. In contrast, H(+)-monocarboxylate cotransport appears to play only a supportive role in pH regulation during RVD, as indicated by lack of stimulation of [14C]lactate efflux during RVD.


1996 ◽  
Vol 270 (1) ◽  
pp. R61-R70 ◽  
Author(s):  
J. D. Bursell ◽  
K. Kirk

Following osmotic swelling, erythrocytes from the European eel, Anguilla anguilla, underwent a regulatory volume decrease. This was prevented by replacement of Na+ with K+ in the suspending medium, consistent with a role for the (normally outward) electrochemical K+ gradient in the volume-regulatory response. The effect of cell swelling on K- transport in these cells was investigated using 86Rb+ as a tracer for K+. Osmotic swelling resulted in an increase in ouabain-insensitive K+ transport that was highest for cells in Cl- and Br- media but which was also significant in I- and NO3- media. Treatment of eel erythrocytes suspended in isotonic Cl- or Br- (but not I- or NO3-) media with the sulfhydryl reagent N-ethylmaleimide (NEM) resulted in a large increase in K+ transport. A quantitative comparison of the pharmacological properties of the “Cl(-)-dependent” NEM-activated pathway with those of the “Cl(-)-independent” pathway mediating swelling-activated K+ transport in cells in Cl(-)-free (NO3- containing) media showed there to be significant differences between them. By contrast, the pharmacological properties of the Cl(-)-independent swelling-activated K+ pathway were indistinguishable from those of the pathway responsible for the swelling-activated transport of taurine, the major organic osmolyte in these cells. A pharmacological analysis of ouabain-insensitive K+ transport in cells swollen in a hypotonic Cl(-)-containing medium showed there to be two components, one with the characteristics of the NEM-activated system, the other showing the characteristics of the Cl(-)-independent swelling-activated pathway. The data are consistent with the presence of two functionally distinct swelling-activated K+ transport mechanisms in eel erythrocytes: a KCl cotransporter that is activated under isotonic conditions by NEM and a Cl(-)-independent, broad-specificity channel that accommodates a diverse range of organic and inorganic solutes.


1986 ◽  
Vol 251 (3) ◽  
pp. C369-C379 ◽  
Author(s):  
B. Kramhoft ◽  
I. H. Lambert ◽  
E. K. Hoffmann ◽  
F. Jorgensen

N-ethylmaleimide (NEM) treatment of steady-state Ehrlich cells induces a substantial net loss of cellular KCl and cell shrinkage. The majority of the initial K loss is Cl dependent. From estimates of membrane potential it is concluded that the NEM-induced KCl loss is electroneutral. The effect of NEM on H extrusion by cells in 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-containing medium showed that only an insignificant part of the K loss could be attributed to an activation of a K-H exchange system. Consequently, NEM appears to activate a K-Cl cotransport, which causes cell shrinkage. The anion preference of the K loss is Cl greater than Br much greater than SCN = NO3. NEM also seems to inhibit a Cl-dependent Na uptake previously described in shrunken cells. Addition of NEM to cells undergoing regulatory volume decrease after swelling in hyposmotic media results in a Cl-dependent acceleration of cell shrinkage, suggesting that a Cl-dependent component of K efflux is induced by NEM also in swollen cells. A Cl-dependent K efflux is also activated in Ca-depleted cells or at reduced extracellular pH after cell swelling. Under isotonic conditions activation of Cl-dependent K flux after Ca depletion or pH reduction could not be demonstrated. The combined results show that Ehrlich cells possess a latent K-Cl cotransport that becomes active after changes in the state of SH groups, regardless of the initial cell volume. A similar K-Cl cotransport is activated in hypotonically swollen cells after Ca depletion or after reduction of the extracellular pH.


2013 ◽  
Vol 32 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Rossana Morabito ◽  
Angela Marino ◽  
Peter K. Lauf ◽  
Norma C. Adragna ◽  
Giuseppa La Spada

2001 ◽  
Vol 118 (3) ◽  
pp. 251-266 ◽  
Author(s):  
Ravshan Z. Sabirov ◽  
Amal K. Dutta ◽  
Yasunobu Okada

In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl− channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around ±25 mV. The whole-cell current was selective for anions and sensitive to Gd3+. In on-cell patches, single-channel events appeared with a lag period of ∼15 min after a hypotonic challenge. Under isotonic conditions, cell-attached patches were silent, but patch excision led to activation of currents that consisted of multiple large-conductance unitary steps. The current displayed voltage- and time-dependent inactivation similar to that of whole-cell current. Voltage-dependent activation profile was bell-shaped with the maximum open probability at −20 to 0 mV. The channel in inside-out patches had the unitary conductance of ∼400 pS, a linear current-voltage relationship, and anion selectivity. The outward (but not inward) single-channel conductance was suppressed by extracellular ATP with an IC50 of 12.3 mM and an electric distance (δ) of 0.47, whereas the inward (but not outward) conductance was inhibited by intracellular ATP with an IC50 of 12.9 mM and δ of 0.40. Despite the open channel block by ATP, the channel was ATP-conductive with PATP/PCl of 0.09. The single-channel activity was sensitive to Gd3+, SITS, and NPPB, but insensitive to phloretin, niflumic acid, and glibenclamide. The same pharmacological pattern was found in swelling-induced ATP release. Thus, it is concluded that the volume- and voltage-dependent ATP-conductive large-conductance anion channel serves as a conductive pathway for the swelling-induced ATP release in C127i cells.


1992 ◽  
Vol 262 (6) ◽  
pp. G1021-G1026 ◽  
Author(s):  
R. J. MacLeod ◽  
P. Lembessis ◽  
J. R. Hamilton

To further elucidate differences in ion transport properties between jejunal crypt and villus cells, we compared the responses of purified cell suspensions to hypotonic stress using electronic cell sizing to evaluate volume changes and 86Rb and 36Cl efflux. After hypotonic swelling, villus enterocytes undergo a regulatory volume decrease (RVD) due to the loss of K+ and Cl- through volume-activated conductances. After 0.6x isotonic challenge in Na(+)-free medium, crypt cells exhibited only partial RVD, with t1/2 congruent to 15 min. The addition of a cation ionophore, gramicidin (0.25 microM), to hypotonically swollen crypt cells caused an accelerated RVD, which was complete with t1/2 congruent to 5 min. Crypt epithelial cells showed no volume-activated 86Rb efflux, but villus enterocytes had an increased rate of 86Rb efflux after hypotonic dilution (P less than 0.001). Gramicidin added to hypotonically diluted crypt cells greatly increased the rate of 86Rb efflux compared with controls. Both villus (30 s; P less than 0.005) and crypt (2 min; P less than 0.001) cells exhibited volume-activated 36Cl efflux in absence of gramicidin. Cl- channel blockers anthracene-9-carboxylate (9-AC, 300 microM) and indanyloxyacetic acid (IAA-94, 100 microM) prevented crypt RVD (P less than 0.001) in the presence of gramicidin. Ouabain (P less than 0.001) or K(+)-free Na(+)-containing medium, but not Ba2+ (5 mM) or quinine (100 microM), prevented crypt partial RVD. We conclude that crypt cells lack volume-activated K+ conductance. The RVD exhibited by crypt cells, although partial, was due to Cl- loss through a volume-activated Cl- conductance and Na+ loss via Na(+)-K(+)-ATPase.


1990 ◽  
Vol 258 (2) ◽  
pp. G299-G307 ◽  
Author(s):  
D. Gleeson ◽  
J. G. Corasanti ◽  
J. L. Boyer

To assess the roles of acid-base transport systems in cell volume regulation in rat hepatocytes, intracellular pH (pHi) was measured in subconfluent monolayers loaded with 2'-7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) after exposure to hypotonic and relative hypertonic media, interventions that stimulate regulatory volume decrease (RVD) and increase (RVI), respectively. During RVD, pHi decreased from 6.98 +/- 0.11 to 6.85 +/- 0.08 in the absence of HCO3- and from 7.26 +/- 0.10 to 7.19 +/- 0.06 in its presence. Omission of Na+ or addition of 1 mM amiloride prevented the decline in pHi. Acute withdrawal or replacement of Na+ in hypotonic medium resulted in a slower rate of fall or recovery in pHi, respectively, than when the same maneuvers were carried out in isotonic medium. In contrast, during RVI, pHi increased from 6.86 +/- 0.11 to 7.15 +/- 0.15 in the absence of HCO3-, a rise in pHi that was also completely abolished by Na+ removal or by 1 mM amiloride. In the presence of HCO3-, the rise in pHi was less marked than in its absence, although net acid efflux was greater because of a greater intracellular buffering capacity. Cl- removal in the presence of HCO3- had no effect on the change in pHi during either RVD or RVI. Perfusion with 0.5 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) during RVD lowered pHi further and accentuated the subsequent pHi rise seen after the return to isotonic medium. These data suggest that Na(+)-H+ exchange in rat hepatocytes is downregulated during RVD and activated during RVI. Cl(-)-HCO3- exchange does not appear to be involved in hepatocyte volume regulation.


1994 ◽  
Vol 266 (1) ◽  
pp. C165-C171 ◽  
Author(s):  
H. Pasantes-Morales ◽  
R. A. Murray ◽  
L. Lilja ◽  
J. Moran

Regulatory volume decrease (RVD) in detached cerebellar astrocytes in culture after acute exposure to hyposmolarity was characterized in this and the accompanying paper [H. Pasantes-Morales, R. A. Murray, R. Sanches-Olea, and J. Moran. Am. J. Physiol. 266 (Cell Physiol. 35): C172-C178, 1994]. RVD was independent of extracellular calcium, was accelerated at pH 8-9 and retarded at pH 6, and was reduced at temperatures < 18 degrees C. The cationic pathway activated by hyposmolarity was specific for K+ and Rb+, since RVD was abolished and secondary swelling occurred when these ions replaced Na+. However, Li+, choline, tris(hydroxymethyl)aminomethane, and glucosamine, all as Cl- salts, did not affect RVD. The anion pathway was unselective, since RVD was inhibited when NaCl was replaced by anion K+ salts with a permeability rank of SCN- = I- > NO3- > Cl- > benzoate > acetate >> SO3- > gluconate. RVD was unaffected by bumetanide (50 microM) and weakly inhibited by furosemide (2 mM). Quinidine but not other K+ channel blockers inhibited RVD, and its effect was reversed by gramicidin. RVD was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and dipyridamole but not by diphenylamine-2-carboxylate or anthracene-9-carboxylate. These results suggest that diffusion possibly via channels rather than cotransporters is involved in the swelling-activated K+ and Cl- fluxes. Gramicidin did not change astrocyte volume in isosmotic conditions, but greatly accelerated RVD, suggesting that low Cl- permeability in isosmotic conditions markedly increases by swelling, thus making K+ permeability the rate-limiting step for RVD.


1991 ◽  
Vol 260 (2) ◽  
pp. F225-F234 ◽  
Author(s):  
K. Strange

Ouabain caused rabbit cortical collecting tubule (CCT) principal cells to swell 53% and then undergo regulatory volume decrease (RVD) at a rate of 4%/min to a new steady-state volume 10% below control. Reduction of peritubular Cl- concentration transiently depolarized transepithelial potential (Vte) by 36 mV and stimulated the rate of RVD 30-fold. Peritubular application of 0.5 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited RVD 74%. In contrast, luminal Cl- reduction or application of DIDS had no effect on RVD. A 10-fold elevation of perfusate K+ caused volume-regulated cells to swell 23% at a rate of 60%/min. Removal of luminal Cl- had no effect on either the rate or magnitude of K+ swelling. Peritubular or bilateral Cl- removal, however, inhibited the rate of K+ swelling by 96 and 99%, respectively. Substitution of bath Cl- for Br-, SCN-, or I- inhibited the rate of K+ swelling by 40, 38, and 98%, respectively. Surprisingly, NO3- inhibited the rate of K+ swelling by 82%. All Cl- substitutes tested transiently depolarized Vte by 3–49 mV. These results suggest strongly that RVD is mediated by a basolateral Cl- channel with a high selectivity for Cl- over other anions.


Sign in / Sign up

Export Citation Format

Share Document