Continuous measurement of blood flow in the superior sagittal sinus of the lamb

1995 ◽  
Vol 269 (2) ◽  
pp. R274-R279 ◽  
Author(s):  
D. A. Grant ◽  
C. Franzini ◽  
J. Wild ◽  
A. M. Walker

We assessed the validity of recording blood flow in the superior sagittal sinus (Qss) as a measure of cerebral blood flow (CBF). While anesthetized, 10 lambs were instrumented with a transit-time ultrasonic flow probe around the superior sagittal sinus to measure Qss, electrodes to assess sleep state, catheters to measure cerebral perfusion pressure (Pcp), and an occlusive cuff around the common brachiocephalic artery to vary blood pressure. After 72 h recovery, lambs were studied during spontaneous sleep-wake cycles to establish 1) the normal range of Qss and 2) the response rate of Qss to rapid alterations of Pcp. Subsequently, the lambs were reanesthetized, and the measurement of Qss was calibrated and validated. Qss was linearly related to the arterial inflow of 35% of the brain mass (y = 0.5 x + 1.6, r = 0.93, n = 4). Qss was greater in active sleep (154.1 +/- 45.7 ml.min-1 x 100 g-1, mean +/- SD, n = 5) than in quiet sleep (97.1 +/- 40.8 ml.min-1 x 100 g-1) and quiet wakefulness (107 +/- 44.3 ml.min-1 x 100 g-1, P < 0.05). Qss responded rapidly (within one beat) to spontaneous and to induced transient changes in Pcp. We conclude that recording blood flow in the superior sagittal sinus provides a simple, continuous, and quantitative measure of CBF from a defined area of the brain and is appropriate for studying transient changes in the cerebral circulation.

1998 ◽  
Vol 18 (6) ◽  
pp. 639-645 ◽  
Author(s):  
Daniel A. Grant ◽  
Carlo Franzini ◽  
Jennene Wild ◽  
Adrian M. Walker

Little is known of the factors that regulate CBF in sleep. We therefore studied 10 lambs to assess the vasodilatory processes that underlie cerebral autoregulation during sleep. Lambs, instrumented to measure CBF (flow probe on the superior sagittal sinus), sleep state, and cerebral perfusion pressure (CPP), were rapidly made hypotensive by inflating a cuff around the brachiocephalic artery to reduce CPP to 30 mm Hg in each state. During control periods, cerebral vascular resistance (CVR in mm Hg/mL/min) was lower in active sleep (2.8±0.3, mean±SD, P ≤ 0.001) than in wakefulness (3.9±0.6) and quiet sleep (4.3±0.6). The CVR decreased promptly in each state as CPP was lowered. The time (seconds) required for maximal cerebral vasodilation to occur was longer in active sleep (35±11) than in quiet sleep (20±6, P ≤ 0.001) and wakefulness (27±11, P ≤ 0.05). The CVR decreased less in active sleep (0.6±0.3, P ≤ 0.001) than in quiet sleep (1.5±0.3), although the changes in CPP induced with brachiocephalic occlusion were equal in each state. In conclusion, our studies provide the first evidence that the vasoactive mechanisms that underlie autoregulation of the cerebral circulation function during sleep. Moreover, our data reveal that the speed and the magnitude of the vasodilatory reserves available for autoregulation are significantly less in active sleep than in quiet sleep.


Author(s):  
A.V. ZHIDKOV ◽  
A.A. MAKAROV ◽  
K.V. PODMASTERYEV ◽  
M.P. ZHILTSOV ◽  
D.E. CHEKMAREVA

The statistical data on epilepsy, etiology and pathogenesis of the disease are given in the article. The main causes that affect the occurrence of epileptic seizures, and possible predictors that are sensitive to these causes (metabolic rate, blood flow velocity, change in electrical activity of the brain) are highlighted. The blood flow dynamics in the common carotid artery, which supplies the brain with oxygen and nutrients is proposed to be considered as one of the possible internal physiological parameters that are believed to be predictors of epileptic seizures.


2016 ◽  
Vol 37 (6) ◽  
pp. 2149-2158 ◽  
Author(s):  
Leonardo A Rivera-Rivera ◽  
Tilman Schubert ◽  
Patrick Turski ◽  
Kevin M Johnson ◽  
Sara E Berman ◽  
...  

Cerebral blood flow, arterial pulsation, and vasomotion may be important indicators of cerebrovascular health in aging and diseases of aging such as Alzheimer’s disease. Noninvasive markers that assess these characteristics may be helpful in the study of co-occurrence of these diseases and potential additive and interacting effects. In this study, 4D flow MRI was used to measure intra-cranial flow features with cardiac-gated phase contrast MRI in cranial arteries and veins. Mean blood flow and pulsatility index as well as the transit time of the peak flow from the middle cerebral artery to the superior sagittal sinus were measured in a total of 104 subjects comprising of four groups: (a) subjects with Alzheimer’s disease, (b) age-matched controls, (c) subjects with mild cognitive impairment, and (d) a group of late middle-aged with parental history of sporadic Alzheimer’s disease. The Alzheimer’s disease group exhibited: a significant decrease in mean blood flow in the superior sagittal sinus, transverse sinus, middle cerebral artery, and internal carotid arteries; a significant decrease of the peak and end diastolic blood flow in the middle cerebral artery and superior sagittal sinus; a faster transmission of peak flow from the middle cerebral artery to the superior sagittal sinus and increased pulsatility index along the carotid siphon.


2012 ◽  
Vol 5 (5) ◽  
pp. 210-217 ◽  
Author(s):  
Min-Ho Nam ◽  
Jaekwan Lim ◽  
Seung-Hoon Choi ◽  
Sungchul Kim ◽  
Kwang-Sup Soh

1988 ◽  
Vol 8 (6) ◽  
pp. 822-828 ◽  
Author(s):  
T. S. Park ◽  
David G. L. Van Wylen ◽  
Rafael Rubio ◽  
Robert M. Berne

We sampled, using the brain dialysis technique, interstitial fluid adenosine from the frontal cortex of newborn piglets subjected to hemorrhagic hypotension while measuring sagittal sinus blood flow, cerebrovascular resistance (CVR), and cerebral O2 delivery. In group 1 (n = 8), MABP was reduced in successive steps from 76 to 30 mm Hg with decrements of ∼ 10 mm Hg. At 60 mm Hg, CVR decreased by 19% (p < 0.001), but sagittal sinus blood flow and interstitial fluid adenosine remained unchanged. At 50 mm Hg, both sagittal sinus blood flow and CVR decreased by 19% (p < 0.001) and interstitial fluid adenosine rose 4.7-fold (p < 0.05). At 40 and 30 mm Hg, sagittal sinus blood flow decreased further but CVR remained steady, whereas interstitial fluid adenosine rose 10- and 16-fold, respectively. In group 2 (n = 7), an abrupt reduction of MABP from 80 to 47 mm Hg produced no change in sagittal sinus blood flow and a 29% decrease in CVR (p < 0.01). Interstitial fluid adenosine increased twofold (p < 0.01). In group 3 (n = 7), an abrupt reduction of MABP from 79 to 40 mm Hg decreased sagittal sinus blood flow and CVR by 24 and 30%, respectively (p < 0.01). Interstitial fluid adenosine rose threefold (p < 0.01). In groups 1, 2, and 3, the increases in interstitial fluid adenosine accompanied decreases in cerebral O2 delivery. In group 4 (n = 7), artificial CSF with a Po2 of 152 mm Hg was perfused through the brain dialysis cannula during graded hypotension. In this group, interstitial fluid adenosine rose only at an MABP of 20 mm Hg. These data support the concept that adenosine participates in the regulation of CBF during hypotension in piglets.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 121-121
Author(s):  
Liza Afzali-Hashemi ◽  
Lena Vaclavu ◽  
John C Wood ◽  
Aart J Nederveen ◽  
Henk J.M.M. Mutsaerts ◽  
...  

Abstract Introduction Silent cerebral infarcts (SCI) are common in patients with sickle cell disease (SCD) and thought to be caused by a mismatch between oxygen delivery and consumption. The mechanism underlying insufficient oxygen utilization is related to severity of anemia, and paradoxically, to the elevated cerebral blood flow (CBF) observed in SCD patients. CBF is elevated as a compensatory mechanism to maintain oxygen delivery, but high CBF levels can result in rapid transit of blood through the brain capillaries, limiting offloading of oxygen to the tissue; a process called arteriovenous shunting. One way to assess functional arteriovenous shunting is to use noncontrast perfusion MRI techniques in which we can assess the signal intensity of an endogenous blood tracer when it reaches the sagittal sinus. This venous signal (VS) reflects the amount of labeled blood that has not exchanged with the brain parenchyma. Under normal physiological conditions, the VS intensity will increase approximately proportionally with CBF as we expect only some of the water to exchange with tissue as it flows by. However, it is unknown whether functional shunting scales with CBF only, or whether other hemodynamic processes play a role in patients with SCD. We hypothesize that, under pathophysiological conditions such as in SCD patients, more labeled blood may pass unexchanged through the capillaries, which results in higher VS. In the present study, we investigated functional shunting by quantifying VS and assessed its association with hemodynamic, demographic and laboratory parameters in both pediatric and adult SCD patients, and controls. In addition, VS-CBF relationship was studied by further increasing CBF after a vasodilatory challenge. Methods We included 28 children (mean age 12.7 ± 2.3, 9 F) and 38 adults (mean age 32.1 ± 11.2, 14 F) with SCD (HbSS and HbS), and 10 healthy race-matched adult controls (mean age 36.4 ± 15.9, 4 F). For the CBF and VS measurements, pseudo-continuous arterial spin labelling (pCASL) data were acquired using 3T MRI. We segmented the ASL blood pool in the sagittal sinus to determine a common region of interest for each group. We used these images as masks to calculate average VS. Notably, for the comparison between children and adults the ratio between VS to gray matter CBF was used (VGR) instead of the VS, to take into account higher CBF in children. To get more insight into the oxygen utilization, oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2) were calculated. In adult participants acetazolamide (ACZ) was used as a vasodilatory challenge. The hematologic laboratory parameters hemoglobin (Hb) and LDH were used as markers of anemia and hemolysis, respectively. Results VS as a marker of cerebral shunting was higher in both adult and pediatric patients with SCD as compared to controls (p&lt;0.01) and increased after ACZ administration in all groups (p&lt;0.01) (Fig. 1A). VS was significantly associated with CBF both before (R 2=0.59, p&lt;0.001) and after ACZ administration (R 2=0.57, p&lt;0.001) in all groups (Fig. 1B). To test the impact of demographics and hematological parameters on the presence of shunting, VS was corrected for CBF (VS CBF) and the residuals were used in multiple linear regression analysis against age, sex, blood flow velocity in the brain feeding arteries, participant groups, hydroxyurea, Hb and LDH. Cerebral shunting, reflected by VS CBF showed significant association with Hb (Fig. 1C). In addition, we added OEF, CMRO 2 and ACZ condition as additional parameters in adults and used a linear mixed model to accommodate the repeated measures dependencies. A negative association between the level of cerebral shunting (VS CBF) and CMRO 2 was found (β=-0.79, p&lt;0.001) in all groups (Fig. 1C), and in adult patients with SCD, CMRO 2, Hb (β=-14.2 p&lt;0.001) and LDH (β=0.13, p=0.002) were significant predictors of VS CBF. Conclusion Our results show that the VS in the sagittal sinus on ASL images can be used to assess functional arteriovenous shunting in the brain. Given its negative association with CMRO 2 in combination with the negative association with hemoglobin and positive correlation with LDH, this functional shunting seems to reflect pathophysiologic shunting related to higher disease severity. Future studies will focus on the relation between functional shunting and the prevalence of SCI, investigating its link to aberrant capillary oxygen exchange in SCD. Figure 1 Figure 1. Disclosures Vaclavu: Philips Healthcare: Research Funding. Biemond: GBT: Honoraria, Research Funding, Speakers Bureau; Novo Nordisk: Honoraria; Novartis: Honoraria, Research Funding, Speakers Bureau; Celgene: Honoraria; Sanquin: Research Funding.


2018 ◽  
Vol 40 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Yulu Shi ◽  
Michael J Thrippleton ◽  
Gordon W Blair ◽  
David A Dickie ◽  
Ian Marshall ◽  
...  

Cerebral small vessel disease (SVD) contributes to 25% of ischemic strokes and 45% of dementias. We aimed to investigate the role of cerebral blood flow (CBF) and intracranial pulsatility in SVD. We scanned 60 patients with minor ischemic stroke, representing a range of white matter hyperintensities (WMH). We rated WMH and perivascular spaces (PVS) using semi-quantitative scales and measured WMH volume. We measured flow and pulsatility in the main cerebral vessels and cerebrospinal fluid (CSF) using phase-contrast MRI. We investigated the association between flow, pulsatility and SVD features. In 56/60 patients (40 male, 67.8±8.3 years) with complete data, median WMH volume was 10.7 mL (range 1.4–75.0 mL), representing median 0.77% (0.11–5.17%) of intracranial volume. Greater pulsatility index (PI) in venous sinuses was associated with larger WMH volume (e.g. superior sagittal sinus, β = 1.29, P < 0.01) and more basal ganglia PVS (e.g. odds ratio = 1.38, 95% confidence interval 1.06, 1.79, per 0.1 increase in superior sagittal sinus PI) independently of age, sex and blood pressure. CSF pulsatility and CBF were not associated with SVD features. Our results support a close association of SVD features with increased intracranial pulsatility rather than with low global CBF, and provide potential targets for mechanistic research, treatment and prevention of SVD.


Sign in / Sign up

Export Citation Format

Share Document