Control of blood pressure mediated by baroreflex changes of heart rate in the chicken embryo (Gallus gallus)

2000 ◽  
Vol 278 (4) ◽  
pp. R980-R986 ◽  
Author(s):  
Jordi Altimiras ◽  
Dane A. Crossley

Pharmacological manipulation of peripheral resistance via sodium nitroprusside and phenylephrine was used to study baroreflex function over the latter two-thirds of incubation in embryonic chickens. From day 9 to day 19of incubation, there is a positive linear relation between heart rate and blood pressure, indicating the feedforward action of arterial pressure on heart rate. A reciprocal relationship between blood pressure and heart rate became pronounced during the last 3 days of incubation. For the purpose of the study, gain of the baroreflex was calculated as maximal gain (only those embryos that demonstrated the response) or average gain (all embryos). Maximal gain increased progressively from 13 ± 7 beats ⋅ min−1 ⋅ kPa−1at 18 days to 105 ± 83 beats ⋅ min−1 ⋅ kPa−1in 2-day-old hatchlings. The percentage of embryos older than 18 days with baroreflex responses increased from 33% on day 19 to 56% on day 21, indicating that baroreflex regulation begins late in incubation (∼90% incubation time), and the gain of this reflex exhibits a maturation over the final 3 days of incubation.

1998 ◽  
Vol 94 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Sharmini Puvi-Rajasingham ◽  
Gareth D. P. Smith ◽  
Adeola Akinola ◽  
Christopher J. Mathias

1. In human sympathetic denervation due to primary autonomic failure, food and exercise in combination may produce a cumulative blood pressure lowering effect due to simultaneous splanchnic and skeletal muscle dilatation unopposed by corrective cardiovascular reflexes. We studied 12 patients with autonomic failure during and after 9 min of supine exercise, when fasted and after a liquid meal. Standing blood pressure was also measured before and after exercise. 2. When fasted, blood pressure fell during exercise from 162 ± 7/92 ± 4 to 129 ± 9/70 ± 5 mmHg (mean arterial pressure by 22 ± 5%), P < 0.0005. After the meal, blood pressure fell from 159 ± 8/88 ± 6 to 129 ± 6/70 ± 4 mmHg (mean arterial pressure by 22 ± 3%), P < 0.0001, and further during exercise to 123 ± 6/61 ± 3 mmHg (mean arterial pressure by 9 ± 3%), P < 0.01. The stroke distance—heart rate product, an index of cardiac output, did not change after the meal. During exercise, changes in the stroke distance—heart rate product were greater when fasted. 3. Resting forearm and calf vascular resistance were higher when fasted. Calf vascular resistance fell further after exercise when fasted. Resting superior mesenteric artery vascular resistance was lower when fed; 0.19 ± 0.02 compared with 032 ± 0.06, P < 0.05. After exercise, superior mesenteric artery vascular resistance had risen by 82%, to 0.53 ± 0.12, P < 0.05 (fasted) and by 47%, to 0.29 ± 0.05, P < 0.05 (fed). 4. On standing, absolute levels of blood pressure were higher when fasted [83 ± 7/52 ± 7 compared with 71 ± 2/41 ± 3 (fed), each P < 0.05]. Subjects were more symptomatic on standing post-exercise when fed. 5. In human sympathetic denervation, exercise in the fed state lowered blood pressure further than when fasted and worsened symptoms of postural hypotension.


1963 ◽  
Vol 18 (5) ◽  
pp. 987-990 ◽  
Author(s):  
Shanker Rao

Reports of cardiovascular responses to head-stand posture are lacking in literature. The results of the various responses, respectively, to the supine, erect, and head-stand posture, are as follows: heart rate/min 67, 84, and 69; brachial arterial pressure mm Hg 92, 90, and 108; posterior tibial arterial pressure mm Hg 98, 196, and 10; finger blood flow ml/100 ml min 4.5, 4.4, and 5.2; toe blood flow ml/100 ml min 7.1, 8.1, and 3.4; forehead skin temperature C 34.4, 34.0 and 34.3; dorsum foot skin temperature C 28.6, 28.2, and 28.2. It is inferred that the high-pressure-capacity vessels between the heart level and posterior tibial artery have little nervous control. The high-pressure baroreceptors take active part in postural adjustments of circulation. The blood pressure equating mechanism is not as efficient when vital tissues are pooled with blood as when blood supply to them is reduced. man; heart rate; blood flow; skin temperature Submitted on January 3, 1963


1999 ◽  
Vol 277 (5) ◽  
pp. E920-E926 ◽  
Author(s):  
Joyce M. Richey ◽  
Marilyn Ader ◽  
Donna Moore ◽  
Richard N. Bergman

We set out to examine whether angiotensin-driven hypertension can alter insulin action and whether these changes are reflected as changes in interstitial insulin (the signal to which insulin-sensitive cells respond to increase glucose uptake). To this end, we measured hemodynamic parameters, glucose turnover, and insulin dynamics in both plasma and interstitial fluid (lymph) during hyperinsulinemic euglycemic clamps in anesthetized dogs, with or without simultaneous infusions of angiotensin II (ANG II). Hyperinsulinemia per se failed to alter mean arterial pressure, heart rate, or femoral blood flow. ANG II infusion resulted in increased mean arterial pressure (68 ± 16 to 94 ± 14 mmHg, P < 0.001) with a compensatory decrease in heart rate (110 ± 7 vs. 86 ± 4 mmHg, P < 0.05). Peripheral resistance was significantly increased by ANG II from 0.434 to 0.507 mmHg ⋅ ml−1⋅ min ( P < 0.05). ANG II infusion increased femoral artery blood flow (176 ± 4 to 187 ± 5 ml/min, P < 0.05) and resulted in additional increases in both plasma and lymph insulin (93 ± 20 to 122 ± 13 μU/ml and 30 ± 4 to 45 ± 8 μU/ml, P < 0.05). However, glucose uptake was not significantly altered and actually had a tendency to be lower (5.9 ± 1.2 vs. 5.4 ± 0.7 mg ⋅ kg−1⋅ min−1, P > 0.10). Mimicking of the ANG II-induced hyperinsulinemia resulted in an additional increase in glucose uptake. These data imply that ANG II induces insulin resistance by an effect independent of a reduction in interstitial insulin.


1993 ◽  
Vol 265 (5) ◽  
pp. R1132-R1140 ◽  
Author(s):  
N. B. Olivier ◽  
R. B. Stephenson

Open-loop baroreflex responses were evaluated in eight conscious dogs before and during congestive heart failure to determine the effects of failure on baroreflex control of blood pressure, heart rate, cardiac output, and total peripheral resistance. Heart failure was induced by rapid ventricular pacing. Baroreflex function was determined by calculation of the range and gain of the open-loop stimulus-response relationships for the effect of carotid sinus pressure on blood pressure, heart rate, cardiac output, and total peripheral resistance. The range and gain of blood pressure responses were substantially reduced as early as 3 days after induction of heart failure (161 +/- 6 to 99 +/- 8 mmHg and -2.7 +/- 0.3 to -1.5 +/- 0.1, respectively) and remained depressed for the 21 days of heart failure. This depression in baroreflex control of blood pressure was associated with similar depressions in reflex range and gain for heart rate (125 +/- 9 to 78 +/- 11 beats/min and -2.05 +/- 0.2 to -1.16 +/- 0.2 beats/min, respectively) and cardiac output (1.74 +/- 0.2 to 0.46 +/- 0.2 l/min and -0.81 +/- 0.02 to -0.027 +/- 0.008 l/min, respectively). The group-averaged range and gain for reflex control of vascular resistance were not altered by heart failure. In three dogs, discontinuation of rapid ventricular pacing led to resolution of heart failure within 7 days and partial restoration of the range and gain of reflex control of blood pressure. We conclude that heart failure reversibly depresses baroreflex control of blood pressure principally through a concurrent reduction in reflex control of cardiac output, whereas reflex control of vascular resistance is not consistently affected.


Author(s):  
Sidharth Sraban Routray ◽  
Ramakanta Mohanty

ABSTRACTObjective: During laparoscopic surgeries, pneumoperitoneum can lead to various pathophysiologic changes in the cardiovascular system resulting inhypertension and tachycardia. Search for ideal drug to prevent this hemodynamic response goes on. The aim of our study was to evaluate the effect oforally administered moxonidine in attenuating the hemodynamic responses that occur during the laparoscopic surgeries.Methods: A total of 50 adult acetylsalicylic acid I and II patients scheduled for elective laparoscopic surgeries were selected for this prospectiverandomized double-blinded study. They were randomly allocated into two groups: moxonidine group (M) and placebo group (P). M group receivedoral moxonidine 0.3 mg at 8 pm on the day before surgery and at 8 am on the day of surgery. P group received a placebo at the same timing as that ofthe M group.Results: Following pneumoperitoneum rise in systolic blood pressure (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and heart rate (HR)was higher in P group in comparison to M group which was statistically significant.Conclusion: Significant rise in HR, SBP, DBP, and mean BP was noted in the P group in comparison to moxonidine group. Moxonidine provided betterperioperative hemodynamic stability in patients undergoing laparoscopic surgeries.Keywords: Moxonidine, Stress response, Laparoscopic.


2009 ◽  
Vol 297 (3) ◽  
pp. R769-R774 ◽  
Author(s):  
Steven J. Swoap ◽  
Margaret J. Gutilla

The laboratory mouse is a facultative daily heterotherm in that it experiences bouts of torpor under caloric restriction. Mice are the most frequently studied laboratory mammal, and often, genetically modified mice are used to investigate many physiological functions related to weight loss and caloric intake. As such, research documenting the cardiovascular changes during fasting-induced torpor in mice is warranted. In the current study, C57BL/6 mice were implanted either with EKG/temperature telemeters or blood pressure telemeters. Upon fasting and exposure to an ambient temperature (Ta) of 19°C, mice entered torpor bouts as assessed by core body temperature (Tb). Core Tb fell from 36.6 ± 0.2°C to a minimum of 25.9 ± 0.9°C during the fast, with a concomitant fall in heart rate from 607 ± 12 beats per minute (bpm) to a minimum of 158 ± 20 bpm. Below a core Tb of 31°C, heart rate fell exponentially with Tb, and the Q10 was 2.61 ± 0.18. Further, mice implanted with blood pressure telemeters exhibited similar heart rate and activity profiles as those implanted with EKG/temperature telemeters, and the fall in heart rate and core Tb during entrance into torpor was paralleled by a fall in blood pressure. The minimum systolic, mean, and diastolic blood pressures of torpid mice were 62.3 ± 10.2, 51.9 ± 9.2, 41.0 ± 7.5 mmHg, respectively. Torpid mice had a significantly lower heart rate (25–35%) than when euthermic at mean arterial pressures from 75 to 100 mmHg, suggesting that total peripheral resistance is elevated during torpor. These data provide new and significant insight into the cardiovascular adjustments that occur in torpid mice.


2020 ◽  
Vol 9 (1) ◽  
pp. 8-15
Author(s):  
Arya Justisia Sani ◽  
Ardhana Tri Arianto ◽  
Muhammad Husni Thamrin

Latar Belakang dan Tujuan: Peningkatan respon hemodinamik yang disebabkan oleh nyeri dapat menyebabkan peningkatan aliran darah otak dan tekanan intrakranial. Blok scalp pada kraniotomi menumpulkan respon hemodinamik karena rangsangan nyeri serta mengurangi penambahan analgesi lain. Penelitian ini bertujuan untuk mengetahui efektifitas blok scalp sebagai analgetik pada kraniotomi.Subjek dan Metode: Penelitian ini menggunakan uji klinik acak tersamar ganda pada 36 pasien dengan status fisik ASA 1–3 dilakukan operasi kraniotomi eksisi dan memenuhi kriteria inklusi. Sampel dibagi menjadi kelompok I (dengan blok scalp) dan kelompok II (tanpa blok scalp). Blok dilakukan sesaat setelah induksi anestesi. Digunakan levobupivakain 0,375% sebanyak 3 ml tiap insersi, pada masing-masing saraf. Tekanan darah, tekanan arteri rata-rata, detak jantung sebelum intubasi dan setelah intubasi, pemasangan pin, insisi kulit dan insisi duramater serta total kebutuhan fentanyl tambahan dicatat. Data yang diperoleh dianalisis dengan program komputer SPSS versi 17 lalu diuji menggunakan uji Kruskal-Wallis atau One-way ANOVA. Batas kemaknaan yang diambil adalah p < 0,05.Hasil: Selama kraniotomi, detak jantung, tekanan darah, tekanan arteri rata-rata secara signifikan lebih tinggi pada pasien tanpa blok scalp terutama pada saat pemasangan pin. Hasil uji statistik menunjukkan perbedaan signifikan, penambahan fentanyl pada pasien dengan blok scalp lebih sedikit dibandingkan tanpa blok scalp, p=0,000 (p<0,05).Simpulan: Blok scalp levobupivakain efektif dalam menurunkan respon hemodinamik terutama pada saat pemasangan pin. Pasien kraniotomi dengan blok scalp membutuhkan penambahan fentanyl lebih sedikit. Differences on Hemodynamic Response with Levobupivacaine Scalp Block in Craniotomy SurgeryAbstractBackground and Objective: Increased hemodynamic response caused by pain can lead to increased cerebral blood flow and intracranial pressure. Scalp block in craniotomy blunts hemodynamic response due to pain and reduce other analgesics addition. This study aims to determine effectiveness of scalp blocks as analgesic in craniotomy.Subject and Method: This study used a double-blind randomized clinical trial in 36 patients with physical status ASA 1-3 who underwent craniotomy and met inclusion criteria. Samples were divided into group I (with scalp block) and group II (without scalp block). Scalp Block was performed right after anesthesia induction. Using levobupivacaine 0.375% 3 ml for each insertion. Blood pressure, mean arterial pressure, heart rate before and after intubation, during pin placement, skin incision and duramater incision and total need for additional fentanyl were recorded. SPSS version 17 was used and data were analysed using Kruskal-Wallis or One-way ANOVA. Statistical significance was accepted at p < 0.05.Result: During craniotomy, heart rate, blood pressure, mean arterial pressure were significantly higher in patients without scalp block especially during pin placement. Statistical test showed significant difference, additional fentanyl in patients with scalp blocks was lesser, p = 0.000 (p <0.05). Conclusion: Levobupivacaine scalp block was effective to blunt hemodynamic response especially during pin placement. Scalp block also decreased additional fentanyl in craniotomy.


2017 ◽  
Vol XXII (130) ◽  
pp. 60-70
Author(s):  
Mariana Werneck Fonseca ◽  
Verônica Batista de Albuquerque ◽  
Gabriel T. N. Martins Ferreira ◽  
Marcelo Augusto de Araújo ◽  
Wagner Luis Ferreira ◽  
...  

This article investigates the electrocardiographic and blood pressure changes caused by different doses of morphine administered epidurally to bitches undergoing elective ovariohysterectomy. Twenty-four healthy bitches weighing 9.8 ± 4.1 kg were assigned to three experimental groups (in each group, n = 8): (i) group M0.1: 0.1 mg/kg morphine; (ii) group M0.15: 0.15 mg/kg morphine; and (iii) group M0.2: 0.2 mg/kg morphine. In all groups, levobupivacaine was added to achieve a total volume of 0.33 mL/kg. During the procedures, the following parameters were controlled: heart rate and rhythm, systolic blood pressure, rectal temperature and blood lactate. The data were analyzed by means of statistical methods of analysis of variance, such as Kruskal-Wallis, Fisher and Tukey tests. Epidural morphine did not cause significant electrocardiographic or blood pressure changes in the tested doses, which makes the use of this drug a viable alternative for epidural anesthesia.


1995 ◽  
Vol 79 (5) ◽  
pp. 1546-1555 ◽  
Author(s):  
B. Pannier ◽  
M. A. Slama ◽  
G. M. London ◽  
M. E. Safar ◽  
J. L. Cuche

Pulsatile changes in blood pressure and arterial diameter were studied noninvasively with applanation tonometry and echo-tracking techniques at the sites of the common carotid artery (CCA) and the carotid arterial bulb (CAB) in 12 healthy volunteers. Determinations were performed before and during application of -10 and -40 mmHg lower body negative pressure (LBNP) to investigate noninvasively the tensile forces acting on the CAB. Together with significantly decreased mean arterial pressure, increased heart rate, forearm vascular resistance, and plasma norepinephrine, the -40 mmHg LBNP stimulus produced the following significant changes in CCA and CAB hemodynamics: 1) for the same decrease in mean arterial pressure, a greater decrease in carotid than in brachial pulse pressure was observed (P < 0.01) due to a significant change in pressure wave transmission and in the timing of the carotid backward pressure wave; and 2) a highly significant decrease in pulsatile changes in diameter and tangential tension occurred, with a greater decrease in systolic than in diastolic tangential tension. Subsequently, cyclic tangential tension decreased more substantially than mean tangential tension. The cyclic changes in tension were quite significant after -40 mmHg LBNP but were already observed for mild -10 mmHg LBNP in which mean systemic blood pressure and heart rate were not modified. During -10 and -40 mmHg LBNP, CCA and CAB compliance and distensibility were unchanged. This study provides evidence that the autonomic nervous system activation produced by the LBNP procedure is associated with significant changes in pressure-wave amplification and in cyclic tensile forces acting on the CAB. These changes, which may occur even for mild LBNP, should be taken into account when interpreting results of the LBNP procedure in humans.


1989 ◽  
Vol 67 (1) ◽  
pp. 250-255 ◽  
Author(s):  
J. P. Fluckiger ◽  
G. Gremaud ◽  
B. Waeber ◽  
A. Kulik ◽  
A. Ichino ◽  
...  

A new system was developed in our laboratory to continuously monitor intra-arterial pressure, heart rate, and sympathetic nerve activity in unanesthetized rats. The animals were prepared 24 h before the start of the experiments. Sympathoneural traffic was measured at the level of splanchnic nerve. The amplitude of the spikes recorded at this level was utilized to express sympathetic nerve activity. The amplitude of the residual electroneurogram signal present 30 min after the rats were killed was 32 +/- 2 mV (mean +/- SE; n = 11). For analysis, these background values were subtracted from values determined in vivo. The nerve we studied contains postganglionic fibers, since electrical activity decreased in response to ganglionic blockade with pentolinium (1.25 mg/min iv for 4 min). The amplitude of spikes fell by 43 +/- 4% (n = 4). Sympathetic nerve activity was highly reproducible at a 24-h interval (104 +/- 26 vs. 111 +/- 27 mV for the amplitude of spikes; n = 11). Dose-response curves to the alpha 1-stimulant methoxamine and to bradykinin were established in four rats. The increase in blood pressure induced by methoxamine caused a dose-dependent fall in sympathetic nerve activity, whereas the blood pressure reduction resulting from bradykinin was associated with a dose-dependent activation of sympathetic drive. These data therefore indicate that it is possible with out system to accurately measure sympathetic nerve activity in the awake rat, together with intra-arterial pressure and heart rate.


Sign in / Sign up

Export Citation Format

Share Document