Maternal infection and fever during late gestation are associated with altered synaptic transmission in the hippocampus of juvenile offspring rats

2008 ◽  
Vol 295 (5) ◽  
pp. R1563-R1571 ◽  
Author(s):  
Germaine C. Lowe ◽  
Giamal N. Luheshi ◽  
Sylvain Williams

Prenatal exposure to infection is known to affect brain development and has been linked to increased risk for schizophrenia. The goal of this study was to investigate whether maternal infection and associated fever near term disrupts synaptic transmission in the hippocampus of the offspring. We used LPS to mimic bacterial infection and trigger the maternal inflammatory response in near-term rats. LPS was administered to rats on embryonic days 15 and 16 and hippocampal synaptic transmission was evaluated in the offspring on postnatal days 20–25. Only offspring from rats that showed a fever in response to LPS were tested. Schaffer collateral-evoked field excitatory postsynaptic potentials (fEPSPs) and fiber volleys in CA1 of hippocampal slices appeared smaller in offspring from the LPS group compared with controls, but, when the fEPSPs were normalized to the amplitude of fiber volleys, they were larger in the LPS group. In addition, intrinsic excitability of CA1 pyramidal neurons was heightened, as antidromic field responses in the LPS group were greater than those from control. Short-, but not long-term plasticity was impaired since paired-pulse facilitation of the fEPSP was attenuated in the LPS group, whereas no differences in long-term potentiation were noted. These results suggest that LPS-induced inflammation during pregnancy produces in the offspring a reduction in presynaptic input to CA1 with compensatory enhancements in postsynaptic glutamatergic response and pyramidal cell excitability. Neurodevelopmental disruption triggered by prenatal infection can have profound effects on hippocampal synaptic transmission, likely contributing to the memory and cognitive deficits observed in schizophrenia.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuanyuan Xu ◽  
Mike T. Lin ◽  
Xiang-ming Zha

Abstract Increased neural activities reduced pH at the synaptic cleft and interstitial spaces. Recent studies have shown that protons function as a neurotransmitter. However, it remains unclear whether protons signal through a metabotropic receptor to regulate synaptic function. Here, we showed that GPR68, a proton-sensitive GPCR, exhibited wide expression in the hippocampus, with higher expression observed in CA3 pyramidal neurons and dentate granule cells. In organotypic hippocampal slice neurons, ectopically expressed GPR68-GFP was present in dendrites, dendritic spines, and axons. Recordings in hippocampal slices isolated from GPR68−/− mice showed a reduced fiber volley at the Schaffer collateral-CA1 synapses, a reduced long-term potentiation (LTP), but unaltered paired-pulse ratio. In a step-through passive avoidance test, GPR68−/− mice exhibited reduced avoidance to the dark chamber. These findings showed that GPR68 contributes to hippocampal LTP and aversive fear memory.


1999 ◽  
Vol 840 (1-2) ◽  
pp. 23-35 ◽  
Author(s):  
John Larson ◽  
Gary Lynch ◽  
Dora Games ◽  
Peter Seubert

2021 ◽  
Author(s):  
Karl F Foley ◽  
Daniel Barnett ◽  
Deborah A Cory-Slechta ◽  
Houhui Xia

Background: Arsenic is a well-established carcinogen known to increase all-cause mortality, but its effects on the central nervous system are less well understood. Recent epidemiological studies suggest that early life exposure to arsenic is associated with learning deficits and behavioral changes, and increased arsenic exposure continues to affect an estimated 200 million individuals worldwide. Previous studies on arsenic exposure and synaptic function have demonstrated a decrease in synaptic transmission and long-term potentiation in adult rodents, but have relied on in vitro or extended exposure in adulthood. Therefore, little is known about the effect of arsenic exposure in development. Objective: Here, we studied the effects of gestational and early developmental arsenic exposure in juvenile mice. Specifically, our objective was to investigate the impact of arsenic exposure on synaptic transmission and plasticity in the hippocampus. Methods: C57BL/6 females were exposed to arsenic (0, 50ppb, 36ppm) in their drinking water two weeks prior to mating and continued to be exposed to arsenic throughout gestation and after parturition. We then performed field recordings in acute hippocampal slices from the juvenile offspring prior to weaning (P17-P23). In this paradigm, the juvenile mice are only exposed to arsenic in utero and via the mothers milk. Results: High (36ppm) and relatively low (50ppb) arsenic exposure both lead to decreased basal synaptic transmission in the hippocampus of juvenile mice. There was a mild decrease in paired-pulse facilitation in juvenile mice exposed to high, but not low, arsenic, suggesting the alterations in synaptic transmission are primarily post-synaptic. Finally, high developmental arsenic exposure led to a significant increase in long-term potentiation. Discussion: These results suggest that indirect, ecologically-relevant arsenic exposure in early development impacts hippocampal synaptic transmission and plasticity that could underlie learning deficits reported in epidemiological studies.


1999 ◽  
Vol 6 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Long Ma ◽  
Gerald Reis ◽  
Luis F. Parada ◽  
Erin M. Schuman

Neurotrophic factors, including BDNF and NT-3, have been implicated in the regulation of synaptic transmission and plasticity. Previous attempts to analyze synaptic transmission and plasticity in mice lacking the NT-3 gene have been hampered by the early death of the NT-3 homozygous knockout animals. We have bypassed this problem by examining synaptic transmission in mice in which the NT-3 gene is deleted in neurons later in development, by crossing animals expressing the CRE recombinase driven by the synapsin I promoter to animals in which the NT-3 gene is floxed. We conducted blind field potential recordings at the Schaffer collateral–CA1 synapse in hippocampal slices from homozygous knockout and wild-type mice. We examined the following indices of synaptic transmission: (1) input-output relationship; (2) paired-pulse facilitation; (3) post-tetanic potentiation; and (4) long-term potentiation: induced by two different protocols: (a) two trains of 100-Hz stimulation and (b) theta burst stimulation. We found no difference between the knockout and wild-type mice in any of the above measurements. These results suggest that neuronal NT-3 does not play an essential role in normal synaptic transmission and some forms of plasticity in the mouse hippocampus.


1999 ◽  
Vol 81 (1) ◽  
pp. 174-183 ◽  
Author(s):  
S. Tekkök ◽  
I. Medina ◽  
K. Krnjević

Tekkök, S., I. Medina, and K. Krnjević. Intraneuronal [Ca2+] changes induced by 2-deoxy-d-glucose in rat hippocampal slices. J. Neurophysiol. 81: 174–183, 1999. Temporary replacement of glucose by 2-deoxyglucose (2-DG; but not sucrose) is followed by long-term potentiation of CA1 synaptic transmission (2-DG LTP), which is Ca2+-dependent and is prevented by dantrolene or N-methyl-d-aspartate (NMDA) antagonists. To clarify the mechanism of action of 2-DG, we monitored [Ca2+]i while replacing glucose with 2-DG or sucrose. In slices (from Wistar rats) kept submerged at 30°C, pyramidal neurons were loaded with [Ca2+]-sensitive fluo-3 or Fura Red. The fluorescence was measured with a confocal microscope. Bath applications of 10 mM 2-DG (replacing glucose for 15 ± 0.38 min, means ± SE) led to a rapid but reversible rise in fluo-3 fluorescence (or drop of Fura Red fluorescence); the peak increase of fluo-3 fluorescence (Δ F/ F 0), measured near the end of 2-DG applications, was by 245 ± 50% ( n = 32). Isosmolar sucrose (for 15–40 min) had a smaller but significant effect (Δ F/ F 0 = 94 ± 14%, n = 10). The 2-DG–induced Δ F/ F 0 was greatly reduced (to 35 ± 15%, n = 16) by d,l-aminophosphono-valerate (50–100 μM) and abolished by 10 μM dantrolene (−4.0 ± 2.9%, n = 11). A substantial, although smaller effect, of 2-DG persisted in Ca2+-free 1 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid (EGTA) medium. Two adenosine antagonists, which do not prevent 2-DG LTP, were also tested; 2-DG–induced Δ F/ F 0 (fluo-3) was not affected by the A1 antagonist 8-cyclopentyl-3,7-dihydro-1,3-dipropyl-1H-purine-2,6-dione (DPCPX 50 nM; 287 ± 38%; n = 20), but it was abolished by the A1/A2 antagonist 8-SPT; 25 ± 29%, n = 19). These observations suggest that 2-DG releases glutamate and adenosine and that the rise in [Ca2+] may be triggered by a synergistic action of glutamate (acting via NMDA receptors) and adenosine (acting via A2b receptors) resulting in Ca2+ release from a dantrolene-sensitive store. The discrepant effects of sucrose and 8-SPT on Δ F/ F 0, on the one hand, and 2-DG LTP, on the other, support other evidence that increases in postsynaptic [Ca2+]i are not essential for 2-DG LTP.


1988 ◽  
Vol 66 (6) ◽  
pp. 841-844 ◽  
Author(s):  
B. R. Sastry ◽  
J. W. Goh ◽  
P. B. Y. May ◽  
S. S. Chirwa

In guinea pig hippocampal slices, stimulation of stratum radiatum during depolarization (with intracellular current injections) of nonspiking cells (presumed to be glia) in the apical dendritic area of CA1 pyramidal neurons resulted in a subsequent long-term potentiation of intracellularly recorded excitatory postsynaptic potentials as well as extracellularly recorded population spikes in the CA1 area. Tetanic stimulation of stratum radiatum resulted in a subsequent prolonged depolarization of the presumed glial cells, and this depolarization was smaller when the tetanus was given during the presence of 2-amino-5-phosphonovalerate or when the slices were exposed to Ca2+-free medium containing Mn2+ and Mg2+. These results suggest that glial depolarization is involved as one of the steps in generating long-term potentiation.


1991 ◽  
Vol 69 (7) ◽  
pp. 1084-1090 ◽  
Author(s):  
G. L. Collingridge ◽  
J. F. Blake ◽  
M. W. Brown ◽  
Z. I. Bashir ◽  
E. Ryan

The present article reviews studies from our laboratory, which have shown that excitatory amino acid receptors of the N-methyl-D-aspartate type are involved in the induction of long-term potentiation in the Schaffer collateral–commissural pathway of rat hippocampal slices. The nature of the excitatory amino acid receptors that mediate the response that is modified by the induction of long-term potentiation is also considered. The mechanism of induction of long-term potentiation is discussed, as are some possible stages that are required for the maintenance of this process. Some new data are presented concerning the ability of N-methyl-D-aspartate to potentiate synaptic transmission and to depress the amplitude of the presynaptic fibre volley. Concerning the potentiation, it is shown that brief (1–2 min) perfusion of slices with N-methyl-D-aspartate is sufficient to potentiate synaptic transmission for at least 3 h. The N-methyl-D-aspartate induced depression of the presynaptic fibre volley is shown to be transient and independent of synaptic transmission.Key words: long-term potentiation, N-methyl-D-aspartate, a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, synaptic plasticity, hippocampus.


Sign in / Sign up

Export Citation Format

Share Document