scholarly journals Inhibition of biliverdin reductase increases ANG II-dependent superoxide levels in cultured renal tubular epithelial cells

2009 ◽  
Vol 297 (5) ◽  
pp. R1546-R1553 ◽  
Author(s):  
Shelby C. Young ◽  
Megan V. Storm ◽  
Joshua S. Speed ◽  
Silvia Kelsen ◽  
Chelsea V. Tiller ◽  
...  

Induction of heme oxygenase-1 (HO-1) in the renal medulla increases carbon monoxide and bilirubin production and decreases ANG II-mediated superoxide production. The goal of this study was to determine the importance of increases in bilirubin to the antioxidant effects of HO-1 induction in cultured mouse thick ascending loop of Henle (TALH) and inner medullary collecting duct (IMCD3) cells. Bilirubin levels were decreased by using small interfering RNAs (siRNAs) targeted to biliverdin reductase (BVR), which is the cellular enzyme responsible for the conversion of biliverdin to bilirubin. Treatment of cultured TALH or IMCD-3 cells with BVR siRNA (50 or 100 nM) resulted in an 80% decrease in the level of BVR protein and decreased cellular bilirubin levels from 46 ± 5 to 23 ± 4 nM ( n = 4). We then determined the effects of inhibition of BVR on ANG II-mediated superoxide production. Superoxide production induced by ANG II (10−9 M) significantly increased in both TALH and IMCD-3 cells. Treatment of TALH cells with BVR siRNA resulted in a significant increase in ouabain-sensitive rubidium uptake from 95 ± 6 to 122 ± 5% control ( n = 4, P < 0.05). Lastly, inhibition of BVR with siRNA did not prevent the decrease in superoxide levels observed in cells pretreated with the HO-1 inducer, hemin. We conclude that decreased levels of cellular bilirubin increase ANG II-mediated superoxide production and sodium transport; however, increases in bilirubin are not necessary for HO-1 induction to attenuate ANG II-mediated superoxide production.

2007 ◽  
Vol 292 (4) ◽  
pp. R1472-R1478 ◽  
Author(s):  
Trinity Vera ◽  
Silvia Kelsen ◽  
Licy L. Yanes ◽  
Jane F. Reckelhoff ◽  
David E. Stec

Heme oxygenase-1 (HO-1) induction can attenuate the development of angiotensin II (ANG II)-dependent hypertension. However, the mechanism by which HO-1 lowers blood pressure in this model is not clear. The goal of this study was to test the hypothesis that induction of HO-1 in the kidney can attenuate the increase in reactive oxygen species (ROS) generation in the kidney that occurs during ANG II-dependent hypertension. Mice were divided into four groups, control (Con), cobalt protoporphyrin (CoPP), ANG II, and ANG II + CoPP. CoPP treatment (50 mg/kg) was administered in a single subcutaneous injection 2 days prior to implantation of an osmotic minipump that infused ANG II at a rate of 1 μg·kg−1·min−1. At the end of this period, mean arterial blood pressure (MAP) averaged 93 ± 5, 90 ± 5, 146 ± 8, and 105 ± 6 mmHg in Con, CoPP-, ANG II-, and ANG II + CoPP-treated mice. To determine whether HO-1 induction resulted in a decrease in ANG II-stimulated ROS generation in the renal medulla, superoxide production was measured. Medullary superoxide production was increased by ANG II infusion and normalized in mice pretreated with CoPP. The reduction in ANG II-mediated superoxide production in the medulla with CoPP was associated with a decrease in extracellular superoxide dismutase protein but an increase in catalase protein and activity. These results suggest that reduction in superoxide and possibly hydrogen peroxide production in the renal medulla may be a potential mechanism by which induction of HO-1 with CoPP lowers blood pressure in ANG-II dependent hypertension.


1995 ◽  
Vol 269 (3) ◽  
pp. F449-F457 ◽  
Author(s):  
L. H. Chow ◽  
S. Subramanian ◽  
G. J. Nuovo ◽  
F. Miller ◽  
E. P. Nord

Three subtypes of endothelin (ET) receptors have been identified by cDNA cloning, namely ET-RA, ET-RB, and ET-RC. In the current study the precise cellular distribution of the ET receptor subtypes in the renal medulla was explored by detecting the corresponding polymerase chain reaction (PCR)-amplified cDNAs by in situ reverse transcription (RT)-PCR. The PCR-amplified cDNAs were detected either by direct incorporation using digoxigenin-dUTP (dig-dUTP) as a nucleotide substrate in the PCR reaction or by in situ hybridization with the dig-dUTP-labeled probe. ET-RB mRNA was detected exclusively in the epithelial cells of the inner and outer medullary collecting duct. In contrast, ET-RA message was observed primarily in interstitial cells and pericytes of the vasae rectae in the outer and inner medulla. Southern blot analysis of PCR-amplified cDNAs reverse transcribed from extracted RNA of rat renal medulla confirmed the specificity of the RT-PCR products. ET-RC mRNA was not detected. We conclude that ET-RB is the major ET receptor found in rat renal medulla and is expressed exclusively on inner medullary collecting duct cells. The pattern of ET receptor mRNA expression described suggests different physiological actions for ET on the diverse cellular structures of the renal medulla.


2000 ◽  
Vol 278 (4) ◽  
pp. H1248-H1255 ◽  
Author(s):  
Thomas L. Pallone ◽  
Erik P. Silldorff ◽  
Zhong Zhang

The intracellular calcium ([Ca2+]i) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10− 8 M) caused [Ca2+]i to fall in proportion to the resting [Ca2+]i ( r =0.82) of the endothelium. ANG II (10− 8 M) also inhibited both phases of the [Ca2+]i response generated by bradykinin (BK, 10− 7 M), 835 ± 201 versus 159 ± 30 nM (peak phase) and 169 ± 26 versus 103 ± 14 nM (plateau phase) (means ± SE). Luminal ANG II reduced BK (10− 7 M)-stimulated plateau [Ca2+]i from 180 ± 40 to 134 ± 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca2+]i to 113 ± 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10− 8 M) caused [Ca2+]i to fall from 352 ± 149 to 105 ± 37 nM. This effect occurred at a threshold ANG II concentration of 10− 10 M and was maximal at 10− 8 M. ANG II inhibited both the rate of Ca2+ entry into [Ca2+]i-depleted endothelia and the rate of Mn2+ entry into [Ca2+]i-replete endothelia. In contrast, ANG II raised [Ca2+]i in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca2+]i from baselines of 99 ± 33 and 53 ± 11 to peaks of 200 ± 47 and 65 ± 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca2+-dependent vasodilators to modulate vasomotor tone in vascular bundles.


2002 ◽  
Vol 283 (6) ◽  
pp. F1267-F1280 ◽  
Author(s):  
Alan M. Weinstein

The present clinical taxonomy of distal renal tubular acidoses includes “gradient,” “secretory,” and “voltage” defects. These categories refer to presumed collecting duct defects in which the epithelium may be abnormally permeable and unable to sustain an ion gradient, in which luminal proton ATPases are defective, or in which electrogenic Na+ reabsorption is impaired and luminal electronegativity is reduced. Classification of affected individuals is based on urinary pH and ion concentrations during spontaneous acidosis and during SO[Formula: see text] infusion, as well as urinary Pco 2 during HCO[Formula: see text] loading. A model of rat CD has been developed that has been used to examine determinants of urinary acidification (Weinstein AM. Am J Physiol Renal Physiol 283: F1252–F1266, 2002) and the interplay of HCO[Formula: see text] and PO[Formula: see text] loads to generate a disequlibrium pH and equilibrium Pco 2. In this paper, pure forms of gradient, voltage, and secretory defects are simulated, with attention to variability in the locus of the defect in the cortical (CCD), outer medullary (OMCD), or inner medullary collecting duct (IMCD). The objective of these calculations is to discover whether the intuitive description of these defects is sustained quantitatively. The most important positive finding is that the locus of the transport defect along the CD plays a critical role in the apparent severity of the lesion, with more proximal defects being less severe and more easily correctable. In particular, model calculations suggest that for gradient or secretory defects to be clinically detectable they need to involve the OMCD and/or IMCD. Additionally, the calculations reveal a possible mechanism for CD K+ wasting, which does not involve failure of H+-K+-ATPase but derives from a paracellular anion leak and thereby a more electronegative lumen. The most important negative finding is the lack of support for the category of renal tubular acidosis associated with a voltage defect. Although CD lesions that present with both K+ and H+ secretory defects suggest mediation by transepithelial electrical potential difference (PD), both PD changes and proton pump PD sensitivity appear too small to account for the observed abnormalities.


2003 ◽  
Vol 285 (6) ◽  
pp. F1068-F1077 ◽  
Author(s):  
Rania Nasrallah ◽  
Anne Landry ◽  
Sonia Singh ◽  
Monika Sklepowicz ◽  
Richard L. Hébert

Alterations in renal prostaglandins (PGs) may contribute to some of the renal manifestations in diabetes leading to nephropathy. PG production is dependent on the activity of cyclooxygenases (COX-1 AND -2) and PG synthases. Our present study investigated levels of these enzymes in streptozotocin-diabetic rats at 2, 4, 6, and 8 wk of diabetes. Immunohistochemical analysis revealed an increase in COX signal in the inner and outer medulla of diabetic rats. This was confirmed by Western blotting, showing up to a fourfold increase in both COX isoforms at 4–6 wk of diabetes. Also, Western blot analysis revealed a sixfold increase in PGE2 synthase expression in the outer medullary region of 6-wk diabetic rats but no difference in the inner medulla. In cultured rat inner medullary collecting duct (IMCD), levels of COX were increased two- to threefold in cells exposed for 4 days to 37.5 mM glucose compared with control of 17.5 mM. While no change in PGE2 synthase levels was noted, PGE2 synthesis was increased. Furthermore, levels of EP1 and EP4 mRNA were increased, as well as a twofold increase in EP4 protein levels. Future studies will determine which COX isoform is contributing to the majority of PGE2 produced in the diabetic IMCD and the significance of these findings to disturbances in IMCD function and to the progression of diabetic nephropathy.


1983 ◽  
Vol 61 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Andre Gougoux ◽  
Patrick Vinay ◽  
Guy Lemieux ◽  
Marc Goldstein ◽  
Bobby Stinebaugh ◽  
...  

The renal medulla can play an important role in acid excretion by modulating both hydrogen ion secretion in the medullary collecting duct and the medullary [Formula: see text]. The purpose of these experiments was to characterize the intrarenal events associated with ammonium excretion in acute acidosis. Cortical events were monitored in two ways: first, the rates of glutamine extraction and ammoniagenesis were assessed by measuring arteriovenous differences and the rate of renal blood flow; second, the biochemical response of the ammoniagenesis pathway was examined by measuring glutamate and 2-oxoglutarate, key renal cortical metabolites in this pathway. There were no significant differences noted in any of these cortical parameters between acute respiratory and metabolic acidosis. Despite a comparable twofold rise in ammonium excretion in both cases, the urine pH, [Formula: see text], and the urine minus blood [Formula: see text] difference (U-B [Formula: see text]) were lower during acute hypercapnia. In these experiments, the urine [Formula: see text] was 34 mmHg (1 mmHg = 133.322 Pa) lower than that of the blood during acute respiratory acidosis while the U-B [Formula: see text] was 5 ± 3 mmHg in acute metabolic acidosis. Thus there were significant differences in medullary events during these two conditions. Although the urine pH is critical in determining ammonium excretion in certain circumstances, these results suggest that regional variations in the medullary [Formula: see text] can modify this relationship.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Qing Zhu ◽  
Junping Hu ◽  
Pin-Lan Li ◽  
Ningjun Li

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite formed by phosphorylation of sphingosine and participates in the regulation of cardiovascular functions. We have recently shown that S1P increases sodium excretion in the renal medulla possibly through inhibiting epithelial sodium channel via the S1P receptor 1 (S1P1), which is mainly localized in collecting ducts with a higher expression level in the renal medulla than the cortex. The present study tested the hypothesis that infusion of an agonist to activate S1P1 in the renal medulla attenuates angiotensin (ANG) II-induced hypertension. Treatment of the mice with a high salt diet (HS, 4% NaCl) for 2 week significantly increased the levels of S1P1 in the renal medulla compared with that in low salt (LS) control by Western blot analysis, whereas this HS-induced increase in S1P1 level was blocked in mice treated with ANG II (600ng/kg/min, sc) (relative S1P1 levels: 1.0±0.19, 1.9±0.14 and 0.9 ±0.18 in LS, HS and HS+ANG II-treated mice, respectively). Infusion of a subpressor dose of ANG II (300ng/kg/min, sc) increased the mean arterial pressure (MAP) in mice with collecting duct-specific knockout of S1P1, but not in S1P1 floxed control mice (MAP: 132±4.7 vs. 96±1.1 mmHg). In contrast, infusion of BAF312, a selective agonist of S1P1, into the renal medulla attenuated the hypertension induced by a pressor dose of ANG II (600 ng/kg/min, sc) in uninephrectomized mice (MAP: 102±1.8, 161 ±7.1 and 133±3.9 in vehicle, ANG II and ANG II+BAF312-treated mice, respectively). These data suggest that inhibition of S1P1 level in the renal medulla may contribute to the pathogenesis of ANG II-induced hypertension and that stimulating the S1P1 pathway may be used as a therapeutic strategy for the treatment of hypertension.


2012 ◽  
Vol 302 (9) ◽  
pp. F1112-F1120 ◽  
Author(s):  
Renfang Song ◽  
Graeme Preston ◽  
Ali Khalili ◽  
Samir S. El-Dahr ◽  
Ihor V. Yosypiv

We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen ( AGT)-deficient mice or pharmacologic antagonism of ANG II AT1 receptor (AT1R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT 1 R-null mice. Papillas were dissected from Hoxb7GFP+ or AGT+/+, +/−, −/− mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10−5 M), or the specific AT1R antagonist candesartan (10−6 M) for 24 h. Percent reduction in papillary length was attenuated in AGT+/+ and in AGT+/− compared with AGT−/− (−18.4 ± 1.3 vs. −32.2 ± 1.6%, P < 0.05, −22.8 ± 1.3 vs. −32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7GFP+ (−1.5 ± 0.3 vs. −10.0 ± 1.4%, P < 0.05) or AGT+/+, +/−, and −/− papillas (−12.8 ± 0.7 vs. −18.4 ± 1.3%, P < 0.05, −16.8 ± 1.1 vs. −23 ± 1.2%, P < 0.05; −26.2 ± 1.6 vs. −32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7GFP+ papillas in the presence of the AT1R antagonist candesartan was higher compared with control (−24.3 ± 2.1 vs. −10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT1R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT1R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, β-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell proliferation, and survival.


2011 ◽  
Vol 89 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Md. Shahrier Amin ◽  
Erona Reza ◽  
Esraa El-Shahat ◽  
Hong-Wei Wang ◽  
Frédérique Tesson ◽  
...  

Inner medullary collecting duct (IMCD) cells from salt-sensitive (S) Dahl rats transport twice as much Na+ as cells from salt-resistant (R) rats, possibly related to dysregulation of the renal epithelial sodium channel (ENaC). The effect of a high-salt diet on ENaC expression in the inner medulla of S versus R rats has not yet been studied. Young, male S and R rats were placed on a regular-salt (0.3%) or high-salt (8%) diet for 2 or 4 weeks. mRNA and protein expression of ENaC subunits were studied by real-time PCR and immunoblotting. Intracellular distribution of the subunits in the IMCD was evaluated by immunohistochemistry. On regular salt, the abundance of the mRNA of β and γENaC was higher in the medulla of S rats than R rats. This was associated with a greater protein abundance of 90 kDa γENaC and higher immunoreactivity for both α and γ ENaC. High salt did not affect mRNA abundance in either strain and decreased apical staining of βENaC in IMCD of R rats. In contrast, high salt did not affect the higher apical localization of αENaC and increased the apical membrane staining for β and γENaC in the IMCD of S rats. Expression of ENaC subunits is enhanced in the medulla of S vs. R rats on regular salt, and further increased on high salt. The persistent high expression of αENaC and increase in apical localization of β and γENaC may contribute to greater retention of sodium in S rats on a high-salt diet.


2007 ◽  
Vol 292 (1) ◽  
pp. F340-F350 ◽  
Author(s):  
Yu-Jung Lee ◽  
In-Kyung Song ◽  
Kyung-Jin Jang ◽  
Jakob Nielsen ◽  
Jørgen Frøkiær ◽  
...  

Vasopressin and angiotensin II (ANG II) play a major role in renal water and Na+ reabsorption. We previously demonstrated that ANG II AT1 receptor blockade decreases dDAVP-induced water reabsorption and AQP2 levels in rats, suggesting cross talk between these two peptide hormones ( Am J Physiol Renal Physiol 288: F673–F684, 2005). To directly address this issue, primary cultured inner medullary collecting duct (IMCD) cells from male Sprague-Dawley rats were treated for 15 min with 1) vehicle, 2) ANG II, 3) ANG II + the AT1 receptor blocker candesartan, 4) dDAVP, 5) ANG II + dDAVP, or 6) ANG II + dDAVP + candesartan. Immunofluorescence microscopy revealed that 10−8 M ANG II or 10−11 M dDAVP ( protocol 1) was associated with increased AQP2 labeling of the plasma membrane and decreased cytoplasmic labeling, respectively. cAMP levels increased significantly in response to 10−8 M ANG II and were potentiated by cotreatment with 10−11 M dDAVP. Consistent with this finding, immunoblotting revealed that this cotreatment significantly increased expression of phosphorylated AQP2. ANG II-induced AQP2 targeting was blocked by 10−5 M candesartan. In protocol 2, treatment with a lower concentration of dDAVP (10−12 M) or ANG II (10−9 M) did not change subcellular AQP2 distribution, whereas 10−12 M dDAVP + 10−9 M ANG II enhanced AQP2 targeting. This effect was inhibited by cotreatment with 10−5 M candesartan. ANG II-induced cAMP accumulation and AQP2 targeting were inhibited by inhibition of PKC activity. In conclusion, ANG II plays a role in the regulation of AQP2 targeting to the plasma membrane in IMCD cells through AT1 receptor activation and potentiates the effect of dDAVP on AQP2 plasma membrane targeting.


Sign in / Sign up

Export Citation Format

Share Document