AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors

2002 ◽  
Vol 283 (6) ◽  
pp. F1313-F1325 ◽  
Author(s):  
Weidong Wang ◽  
Chunling Li ◽  
Tae-Hwan Kwon ◽  
Mark A. Knepper ◽  
Jørgen Frøkiær ◽  
...  

The purpose of this study was to evaluate whether hypercalcemia is associated with downregulation of renal aquaporins (AQPs), including AQP1, AQP2, phosphorylated AQP2 (p-AQP2), AQP3, and AQP4, and if this is the case, to test whether cAMP-phosphodiesterase (PDE) inhibitor treatment can prevent AQP downregulation and prevent the development of polyuria. Vitamin D-induced hypercalcemia in rats was associated with increased urine output and reduced urine osmolality, consistent with previous findings (Levi M, Peterson L, and Berl T. Kidney Int 23: 489–497, 1983). Semiquantitative immunoblotting revealed a significant reduction in the abundance of inner medullary AQP2 (52 ± 6% of control levels), consistent with previous studies, and of AQP2, which is phosphorylated at the PKA phosphorylation consensus site serine 256 (p-AQP2; 36 ± 8%). Moreover, AQP3 abundance was also significantly decreased (45 ± 7 and 61 ± 6% of control levels in inner medulla and whole kidney, respectively). Consistent with this, immunohistochemistry demonstrated reduced AQP3 immunolabeling along the entire collecting duct. AQP4 expression was not reduced. Surprisingly, total kidney AQP1 abundance was also reduced (60 ± 6%). AQP1 expression was reduced in the cortex and outer stripe of the outer medulla (48 ± 7%; i.e., in proximal tubules). In contrast, AQP1 levels were not changed in the inner stripe of the outer medulla or in the inner medulla (i.e., descending thin limbs and vasa recta). Treatment with the cAMP-PDE inhibitors rolipram and milrinone in combination (inhibiting PDE IV and PDE III isoenzymes) at day 2 and onward completely prevented the hypercalcemia-induced downregulation of AQP2 and AQP3 (but not AQP1) and completely prevented the development of polyuria. In conclusion, AQP3, AQP2, and p-AQP2 are downregulated and are likely to play critical roles in the development of polyuria associated with vitamin D-induced hypercalcemia. Moreover, PDE inhibitor treatment significantly prevented the reduced expression of collecting duct AQPs and prevented the development of polyuria.

2006 ◽  
Vol 290 (3) ◽  
pp. F674-F687 ◽  
Author(s):  
Soo Wan Kim ◽  
Sophie de Seigneux ◽  
Martin C. Sassen ◽  
JongUn Lee ◽  
Jin Kim ◽  
...  

Nephrotic syndrome is often accompanied by sodium retention and generalized edema. We hypothesize that dysregulation of the epithelial sodium channel (ENaC) and/or of sodium (co)transporters may be responsible for the increased sodium retention associated with HgCl2-induced nephropathy. In addition, we examined the hypothesis that the expression of type 2 11β-hydroxysteroid dehydrogenase (11βHSD2) is reduced, contributing to the enhanced mineralocorticoid activity. Membranous nephropathy was induced in Brown Norway rats by repeated injections of HgCl2 (1 mg/kg sc), whereas the control group received only vehicle. After 13 days of treatment, the abundance of ENaC subunits, sodium (co)transporters, and 11βHSD2 in the kidney was examined by immunoblotting and immunohistochemistry. HgCl2 treatment induced marked proteinuria, hypoalbuminemia, decreased urinary sodium excretion, and ascites. The protein abundance of α-ENaC was increased in the cortex/outer stripe of outer medulla (OSOM) and inner stripe of the outer medulla (ISOM). The protein abundances of β-ENaC and γ-ENaC were decreased in the cortex/OSOM while increased in the ISOM. Immunoperoxidase microscopy demonstrated increased targeting of ENaC subunits to the apical plasma membrane in the distal convoluted tubule, connecting tubule, and cortical and medullary collecting duct segments. Moreover, 11βHSD2 abundance was decreased in cortex/OSOM and ISOM. The protein abundances of type 3 Na/H exchanger (NHE3), Na-K-2Cl cotransporter (NKCC2), and thiazide-sensitive Na-Cl cotransporter (NCC) were decreased. Moreover, the abundance of the α-1 subunit of the Na-K-ATPase was decreased in the cortex/OSOM and ISOM but remained unchanged in the inner medulla. These results suggest that increased apical targeting of ENaC subunits combined with diminished abundance of 11βHSD2 may contribute to sodium retention associated with HgCl2-induced nephrotic syndrome. The decreased abundance of NHE3, NKCC2, NCC, and Na-K-ATPase may play a compensatory role in promoting sodium excretion.


2000 ◽  
Vol 279 (5) ◽  
pp. F901-F909 ◽  
Author(s):  
Henrik Vorum ◽  
Tae-Hwan Kwon ◽  
Christiaan Fulton ◽  
Brian Simonsen ◽  
Inyeong Choi ◽  
...  

An electroneutral Na-HCO3 − cotransporter (NBCN1) was recently cloned, and Northern blot analyses indicated its expression in rat kidney. In this study, we determined the cellular and subcellular localization of NBCN1 in the rat kidney at the light and electron microscopic level. A peptide-derived antibody was raised against the COOH-terminal amino acids of NBCN1. The affinity-purified antibody specifically recognized one band, ∼180 kDa, in rat kidney membranes. Peptide- N-glycosidase F deglycosylation reduced the band to ∼140 kDa. Immunoblotting of membrane fractions from different kidney regions demonstrated strong signals in the inner stripe of the outer medulla (ISOM), weaker signals in the outer stripe of the outer medulla and inner medulla, and no labeling in cortex. Immunocytochemistry demonstrated that NBCN1 immunolabeling was exclusively observed in the basolateral domains of thick ascending limb (TAL) cells in the outer medulla (strongest in ISOM) but not in the cortex. In addition, collecting duct intercalated cells in the ISOM and in the inner medulla also exhibited NBCN1 immunolabeling. Immunoelectron microscopy demonstrated that NBCN1 labeling was confined to the basolateral plasma membranes of TAL and collecting duct type A intercalated cells. Immunolabeling controls were negative. By using 2,7-bis-carboxyethyl-5,6-caboxyfluorescein, intracellular pH transients were measured in kidney slices from ISOM and from mid-inner medulla. The results revealed DIDS-sensitive, Na- and HCO3 −-dependent net acid extrusion only in the ISOM but not in mid-inner medulla, which is consistent with the immunolocalization of NBCN1. The localization of NBCN1 in medullary TAL cells and medullary collecting duct intercalated cells suggests that NBCN1 may be important for electroneutral basolateral HCO3 − transport in these cells.


2009 ◽  
Vol 297 (6) ◽  
pp. F1678-F1688 ◽  
Author(s):  
Sophie C. Lütken ◽  
Soo Wan Kim ◽  
Thomas Jonassen ◽  
David Marples ◽  
Mark A. Knepper ◽  
...  

Heart failure (HF) was induced by ligation of the left anterior descending artery (LAD). Left ventricular end-diastolic pressure (LVEDP) >25 mmHg (at day 23 after LAD ligation) was the inclusion criterion. The rats were divided into three groups: sham-operated (Sham, n = 23, LVEDP: 5.6 ± 0.6 mmHg), HF ( n = 14, LVEDP: 29.4 ± 1.4 mmHg), and candesartan (1 mg·kg−1·day−1 sc)-treated HF (HF + Can, n = 9, LVEDP: 29.2 ± 1.2 mmHg). After 7 days (i.e., 29 days after LAD ligation) semiquantitative immunoblotting revealed increased abundance of inner medulla aquaporin-2 (AQP2) and AQP2 phosphorylated at Ser256 (p-AQP2) in HF. There was also markedly enhanced apical targeting of AQP2 and p-AQP2 in inner medullary collecting duct (IMCD) in HF compared with Sham rats, shown by immunocytochemistry. Candesartan treatment significantly reversed the increases in both AQP2 and p-AQP2 expression and targeting. In contrast, there were only modest changes in other collecting duct segments. Semiquantitative immunoblots revealed increased expression of type 3 Na+/H+ exchanger (NHE3) and Na+-K+-2Cl− cotransporter (NKCC2) in kidneys from HF compared with Sham rats: both effects were reversed or prevented by candesartan treatment. The protein abundance of α-epithelial sodium channel (α-ENaC) was increased while β-ENaC and γ-ENaC expression was decreased in the cortex and outer stripe of the outer medulla in HF compared with Sham rats, which was partially reversed by candesartan treatment. These findings strongly support an important role of angiotensin II in the pathophysiology of renal water and sodium retention associated with HF.


2003 ◽  
Vol 284 (5) ◽  
pp. F1066-F1079 ◽  
Author(s):  
Chunling Li ◽  
Weidong Wang ◽  
Mark A. Knepper ◽  
Søren Nielsen ◽  
Jørgen Frøkiær

The expression of aquaporin-2 (AQP2) is decreased in rats with bilateral ureteral obstruction (BUO) and unilateral ureteral obstruction (UUO). Therefore, the expression of additional renal aquaporins (AQP1–4) and phosphorylated AQP2 (p-AQP2), known to play a role in urinary concentration, was examined in a Wistar rat model with 24 h of UUO. In obstructed kidneys, immunoblotting revealed a significant decrease in the expression of inner medullary AQP2 to 42 ± 4, p-AQP2 to 23 ± 5, AQP3 to 19 ± 6, AQP4 to 11 ± 5, and AQP1 to 64 ± 8% of sham levels. AQP1 expression located in the proximal tubule decreased to 74 ± 4% of sham levels ( P < 0.05). Immunocytochemistry confirmed the downregulation of AQP3, AQP4, and p-AQP2. In contralateral nonobstructed kidneys, immunoblotting also revealed significant reductions of AQP1 in the inner medulla, outer medulla, and cortex, whereas expression of AQP2, AQP3, AQP4, and p-AQP2 was unchanged. Furthermore, we collected the urine from both obstructed and nonobstructed kidneys for 2 h, respectively, after 24 h of UUO. Urine collection from obstructed kidneys during 2 h after release of UUO revealed a significant reduction in urine osmolality and solute-free water reabsorption (TcH2O). Moreover, an increase in urine production and TcH2O was observed in contralateral kidneys. To examine whether vasopressin-independent mechanisms are involved in AQP2 regulation, vasopressin-deficient Brattleboro (BB) rats with 24 h of UUO were examined. Immunoblotting revealed downregulation of AQP2, p-AQP2, AQP3, and AQP1 in obstructed kidneys and downregulation of p-AQP2 and AQP1 in nonobstructed kidneys. In conclusion, 1) UUO is associated with severe downregulation of AQP2, AQP3, AQP4, and AQP1; thus all of these AQPs may play important roles in the impaired urinary concentrating capacity in the obstructed kidney; 2) the reduced levels of AQP1 in the nonobstructed kidney may contribute to the compensatory increase in urine production; and 3) downregulation of AQPs in BB rats supports the view that vasopressin-independent pathways may be involved in AQP2 and AQP3 regulation in the obstructed kidney.


2004 ◽  
Vol 287 (4) ◽  
pp. F797-F805 ◽  
Author(s):  
Ying Tian ◽  
Ryota Serino ◽  
Joseph G. Verbalis

Renal concentrating ability is known to be impaired with aging. The antidiuretic hormone AVP plays an important role in renal water excretion by regulating the membrane insertion and abundance of the water channel aquaporin-2 (AQP2); this effect is primarily mediated via the V2 subtype of the AVP receptor (V2R). This study evaluated the hypothesis that decreased renal sensitivity to AVP, with subsequent altered renal AQP2 expression, contributes to the reduced urinary concentrating ability with aging. Our results show that under baseline conditions, urine osmolality is significantly lower in aged Fischer 344 and Brown-Norway F1 hybrid (F344BN) rats despite equivalent plasma AVP concentrations as in young rats. Levels of kidney V2R mRNA expression and AQP2 abundances were also significantly decreased in aged F344BN rats, as was AQP2 immunostaining in collecting duct cells. In response to moderate water restriction, urine osmolality increased by significantly lesser amounts in aged F344BN rats compared with young rats despite similar increases in plasma AVP levels. Moderate water restriction induced equivalent relative increases in renal AQP2 abundances in all age groups but resulted in significantly lower abundances in total kidney AQP2 protein in aged compared with young F344BN rats. These results therefore demonstrate a functional impairment of renal concentrating ability in aged F344BN rats that is not due to impaired secretion of AVP but rather appears to be related to impaired responsiveness of the kidney to AVP that is secondary, at least in part, to a downregulation of renal V2R expression and AQP2 abundance.


2011 ◽  
Vol 301 (5) ◽  
pp. F979-F996 ◽  
Author(s):  
Aurélie Edwards ◽  
Anita T. Layton

We expanded our region-based model of water and solute exchanges in the rat outer medulla to incorporate the transport of nitric oxide (NO) and superoxide (O2−) and to examine the impact of NO-O2− interactions on medullary thick ascending limb (mTAL) NaCl reabsorption and oxygen (O2) consumption, under both physiological and pathological conditions. Our results suggest that NaCl transport and the concentrating capacity of the outer medulla are substantially modulated by basal levels of NO and O2−. Moreover, the effect of each solute on NaCl reabsorption cannot be considered in isolation, given the feedback loops resulting from three-way interactions between O2, NO, and O2−. Notwithstanding vasoactive effects, our model predicts that in the absence of O2−-mediated stimulation of NaCl active transport, the outer medullary concentrating capacity (evaluated as the collecting duct fluid osmolality at the outer-inner medullary junction) would be ∼40% lower. Conversely, without NO-induced inhibition of NaCl active transport, the outer medullary concentrating capacity would increase by ∼70%, but only if that anaerobic metabolism can provide up to half the maximal energy requirements of the outer medulla. The model suggests that in addition to scavenging NO, O2− modulates NO levels indirectly via its stimulation of mTAL metabolism, leading to reduction of O2 as a substrate for NO. When O2− levels are raised 10-fold, as in hypertensive animals, mTAL NaCl reabsorption is significantly enhanced, even as the inefficient use of O2 exacerbates hypoxia in the outer medulla. Conversely, an increase in tubular and vascular flows is predicted to substantially reduce mTAL NaCl reabsorption. In conclusion, our model suggests that the complex interactions between NO, O2−, and O2 significantly impact the O2 balance and NaCl reabsorption in the outer medulla.


2000 ◽  
Vol 165 (1) ◽  
pp. 25-37 ◽  
Author(s):  
P MacDonald ◽  
S MacKenzie ◽  
LE Ramage ◽  
RW Brown ◽  

Corticosteroid control of distal nephron sodium handling, particularly through the amiloride-sensitive sodium channel (ENaC), has a key role in blood pressure regulation. The mechanisms regulating ENaC activity remain unclear. Despite the generation of useful mouse models of disorders of electrolyte balance and blood pressure, there has been little study of distal nephron sodium handling in this species. To investigate how corticosteroids regulate ENaC activity we isolated cDNA for the three mouse ENaC subunits (alpha, beta and gamma), enabling their quantitation by competitive PCR and in situ hybridisation. Kidneys were analysed from mice 6 days after adrenalectomy or placement of osmotic mini-pumps delivering aldosterone (50 microg/kg per day), dexamethasone (100 microg/kg per day), spironolactone (20 mg/kg per day) or vehicle alone (controls). In controls, renal ENaCalpha mRNA exceeded beta or gamma by approximately 1.75- to 2.8-fold. All subunit mRNAs were expressed in renal cortex and outer medulla, where the pattern of expression was fully consistent with localisation in collecting duct, whereas the distribution in cortex suggested expression extended beyond the collecting duct into adjacent distal tubule. Subunit mRNA expression decreased from cortex to outer medulla, with a gradual reduction in beta and gamma, and ENaCalpha decreased sharply ( approximately 50%) across the outer medulla. Expression of ENaCbeta and gamma (but not alpha) extended into inner medulla, suggesting the potential for inner medulla collecting duct cation channels in which at least ENaCbetagamma participate. Aldosterone significantly increased ENaC subunit expression; the other treatments had little effect. Aldosterone caused a 1.9- to 3.5-fold increase in ENaCalpha (particularly marked in outer medullary collecting duct), but changes for beta and gamma were minor and limited to the cortex. The results raise the possibility that medullary ENaCalpha upregulation by aldosterone will create more favourable subunit stoichiometry leading to a more substantial increase in ENaC activity. In cortex, such a mechanism is unlikely to have a major role.


1997 ◽  
Vol 8 (2) ◽  
pp. 302-305
Author(s):  
J R Silkensen ◽  
A Agarwal ◽  
K A Nath ◽  
J C Manivel ◽  
M E Rosenberg

Clusterin is a ubiquitous glycoprotein induced in many organs, including the kidney, at times of tissue injury and/or remodeling. It is speculated in this study that clusterin preserves cell interactions that are otherwise perturbed by renal insults. The purpose of this study was to examine clusterin expression after cisplatin nephrotoxicity, a model characterized by a delayed time course of injury and a well-defined site of that injury (proximal tubule). Sprague-Dawley rats were treated with intravenous cisplatin (6 mg/kg) or vehicle. Serum creatinine concentrations were measured and kidneys harvested at 1, 2, and 5 days. Marked induction of clusterin mRNA was seen only at 5 days, a time when serum creatinine concentration was the highest. Histology of kidney tissue 5 days after cisplatin administration revealed marked tubular necrosis localized to the outer stripe of the outer medulla, a region rich in proximal tubules. Immunohistochemistry and in situ hybridization at 5 days demonstrated clusterin primarily in the inner stripe of the outer medulla. In conclusion, expression of clusterin follows renal injury with cisplatin at a time corresponding to the morphologic evidence of tubular necrosis and cell detachment; quite surprisingly, such expression occurs at a site distant from the primary injury.


1997 ◽  
Vol 273 (4) ◽  
pp. F499-F506 ◽  
Author(s):  
Elisabeth Feifel ◽  
Markus Krall ◽  
John P. Geibel ◽  
Walter Pfaller

The aim of the present study was to obtain detailed information on MDCK cell proton secretion characteristics under various growth conditions. Confluent monolayers cultured on glass coverslips were adapted over 48 h to media with different osmolality and pH (200 mosmol/kgH2O, pH 7.4; 300 mosmol/kgH2O, pH 7.4; and 600 mosmol/kgH2O, pH 6.8) corresponding to the luminal fluid composition of the collecting duct segments found in the in renal cortex, the outer stripe of outer medulla and inner medulla. Proton fluxes were determined from the recovery of intracellular pH following an acid load induced by an NH4Cl pulse times the corresponding intrinsic buffering power (βi). The intracellular buffering power was found to change only with culture medium osmolality but not with culture medium pH. In addition to an amiloride and Hoe-694-sensitive Na+/H+exchange, Madin-Darby canine kidney (MDCK) cells possess a Sch-28080-sensitive, K+-dependent H+ extrusion mechanism that is increased upon adaptation of monolayers to hyperosmotic-acidic culture conditions. A significant contribution of the bafilomycin A1-sensitive vacuolar H+-ATPase could be found only in cells adapted to hyposmotic culture conditions. Exposure of MDCK cells to 10−5 or 10−7 M aldosterone for either 1 or 18 h did not alter the H+ extrusion characteristics significantly. The results obtained show that different extracellular osmolality and pH induce different MDCK phenotypes with respect to their H+-secreting systems.


1960 ◽  
Vol 199 (5) ◽  
pp. 915-918 ◽  
Author(s):  
George A. Bray

The freezing point depression of slices of rat kidney removed during water diuresis or antidiuresis has been investigated with a microcryoscopic method. The osmotic pressure gradient in the inner medulla first demonstrated by Wirz has been confirmed. The inner medulla was found to be hypertonic to plasma during water diuresis. Hypotonic tubules were present throughout the cortex and outer stripe of the outer medulla.


Sign in / Sign up

Export Citation Format

Share Document