scholarly journals An online tool for calculation of free-energy balance for the renal inner medulla

2012 ◽  
Vol 303 (3) ◽  
pp. F366-F372 ◽  
Author(s):  
Ryan L. Vilbig ◽  
Abhijit Sarkar ◽  
Joseph Zischkau ◽  
Mark A. Knepper ◽  
Trairak Pisitkun

Concentrating models of the renal inner medulla can be classified according to external free-energy balance into passive models (positive values) and models that require an external energy source (negative values). Here we introduce an online computational tool that implements the equations of Stephenson and colleagues (Stephenson JL, Tewarson RP, Mejia R. Proc Natl Acad Sci USA 71: 1618–1622, 1974) to calculate external free-energy balance at steady state for the inner medulla ( http://helixweb.nih.gov/ESBL/FreeEnergy ). Here “external free-energy balance” means the sum of free-energy flows in all streams entering and leaving the inner medulla. The program first assures steady-state mass balance for all components and then tallies net external free-energy balance for the selected flow conditions. Its use is illustrated by calculating external free-energy balance for an example of the passive concentrating model taken from the original paper by Kokko and Rector (Kokko JP, Rector FC Jr. Kidney Int 2: 214–223, 1972).

2017 ◽  
Vol 6 (2) ◽  
pp. 20 ◽  
Author(s):  
Manabu Tamura

Ninety-two sets of observed dislocation densities for crept specimens of 21 types of ferritic/martensitic and austenitic steels, Al, W, Mo, and Mg alloys, Cu, and Ti including germanium single crystals were collected to verify an equation for evaluating the dislocation density during steady-state creep proposed by Tamura and Abe (2015). The activation energy, Qex, activation volume, Vex, and Larson–Miller constant, Cex, were calculated from the creep data. Using these parameter constants, the strain rate, and the temperature dependence of the shear modulus, a correction term, Gamma, was back-calculated from the observed dislocation density for each material. Gamma is defined in the present paper as a function of the temperature dependences of both the shear modulus and pre-exponential factor of the strain rate. The values of Gamma range from −394 to 233  and average 2.1 KJmol-1, which is a value considerably lower than the average value of Qex (410.4 KJmol-1), and values of Gamma are mainly within the range from 0 to 50 KJmol-1. The change in Gibbs free energy, Delta G, for creep deformation is obtained using the calculated value of , and the empirical relation Delta G~Delta GD is found, where Delta GD is the change in Gibbs free energy for self-diffusion of the main componential element of each material. Experimental data confirm the validity of the evaluation equation for the dislocation density.


1980 ◽  
Vol 47 (4) ◽  
pp. 736-740 ◽  
Author(s):  
D. Durban

The process of the tube drawing between two rough conical walls is analyzed within the framework of continuum plasticity. Material behavior is modeled as rigid/linear-hardening along with the von-Mises flow rule. Assuming a radial flow pattern and steady state flow conditions it becomes possible to obtain an exact solution for the stresses and velocity. Useful relations are derived for practical cases where the nonuniformity induced by wall friction is small. A few restrictions on the validity of the results are discussed.


Author(s):  
Kevin Reid ◽  
John Denton ◽  
Graham Pullan ◽  
Eric Curtis ◽  
John Longley

An investigation into the effect of stator-rotor hub gap sealing flow on turbine performance is presented. Efficiency measurements and rotor exit area traverse data from a low speed research turbine are reported. Tests carried out over a range of sealing flow conditions show that the turbine efficiency decreases with increasing sealant flow rate but that this penalty is reduced by swirling the sealant flow. Results from time-accurate and steady-state simulations using a three-dimensional multi-block RANS solver are presented with particular emphasis paid to the mechanisms of loss production. The contributions toward entropy generation of the mixing of the sealant fluid with the mainstream flow and of the perturbed rotor secondary flows are assessed. The importance of unsteady stator wake/sealant flow interactions is also highlighted.


2012 ◽  
Vol 44 (3) ◽  
pp. 281-286
Author(s):  
A.V. Aleksandrov ◽  
V.V. Aleksandrov

This article deals with the use of computer modeling to develop technical solutions to ensure better quality of alumina-containing sinter. The simulation accounted for the influence of the feed materials on the thermal processes in the furnace. The energy balance (including thermal conductivity, heat convection and radiant heat exchange) was solved assuming steady state. A good correlation was observed for the actual and calculated temperatures of the solids and gases, with less than 15% discrepancy. Using the model of the furnace investigated the possibility of lowering the temperature of sintering by removing heat from the outside of the furnace shell. To reduce the sintering temperature to 1000 ?C length of the refractory lined steel is 5 m, the height of the lining should not exceed - 0.06 m, the required rate of cold water - 54.7 m3/h


Author(s):  
S Becker ◽  
T Xu ◽  
F Ilchmann ◽  
J Eisler ◽  
B Wolf

This paper presents a concept for an implantable micro-pump based on hydrogen- generating gas cells. The gas-generating cell is separated from the drug reservoir by an expandable latex membrane. The system offers linear drug delivery with flowrates ranging from 8 nl/s to 2 μl/s and a total delivery volume of up to 160 ml. Drugs can be dispensed over a wide backpressure range. The device is scalable based on the size of the gas-producing cell and requires no external energy source. Possible fields of application include in vivo local drug delivery for chemotherapy, diabetes, and pain management.


Author(s):  
Yoram Rubin

Many applications require primary information such as average fluxes as a prelude to more complex calculations. In water balance calculations one may be interested only in the average fluxes. For both cases the concept of effective conductivity is useful. The effective hydraulic conductivity is defined by where the angled brackets denote the expected value operator. The local flux fluctuation is defined by the difference qi(x) — (qi(x)). Its statistical properties as well as those of the velocity will be investigated in chapter 6. To qualify as an effective property in the strict physical sense, Kef must be a function of the aquifer’s material properties and not be influenced by flow conditions such as the head gradient and boundary conditions (Landauer, 1978). Our goal in this chapter is to explore the concept of the effective conductivity Kef and to relate it to the medium’s properties under as general conditions as possible. Additionally, we shall explore the conditions where this concept is irrelevant and applicable, the important issue being that Kef is defined in an ensemble sense, but for applications we need spatial averages. Several methods for deriving Kef will be described below. The general approach for defining Kef includes the following steps. First, H is defined as an SRF and is expressed with the aid of the flow equation in terms of the hydro-geological SRFs (conductivity, mostly) and the boundary conditions. The H SRF is then substituted in Darcy’s law and an expression in the form equivalent to (5.1) is sought. If and only if the coefficient in front of the mean head gradient is not a function of the flow conditions will it qualify as Kef. The derivation of the effective conductivity employs the flow equation. In steady-state incompressible flow, for example, Laplace’s equation is employed. Solutions derived under Laplace’s equation are applicable, under appropriate conditions, for other physical phenomena governed by the same mathematical model. For example, the electrical field in steady state is also described by Laplace’s equation.


Sign in / Sign up

Export Citation Format

Share Document