scholarly journals Role of 20-HETE in D1/D2 dopamine receptor synergism resulting in the inhibition of Na+-K+-ATPase activity in the proximal tubule

2007 ◽  
Vol 292 (5) ◽  
pp. F1435-F1442 ◽  
Author(s):  
Carolina Kirchheimer ◽  
Carlos F. Mendez ◽  
Andrea Acquier ◽  
Susana Nowicki

Previous studies propose 20-hydroxyeicosatetraenoic acid (20-HETE), a major arachidonic acid metabolite of cytochrome P-450 (CYP), as a possible mediator of Na+-K+-ATPase inhibition by dopamine (DA). The aim of this study was to investigate the intracellular mechanisms involved in this effect and to elucidate the DA receptor associated with the 20-HETE pathway in the rat kidney. DA (10−5 M) inhibited Na+-K+-ATPase activity in microdissected tubular segments to 59.4 ± 3.8% of control activity. This response was suppressed by the CYP4A inhibitor 17-octadecynoic acid (10−6 M), which had no effect per se, thus confirming the participation of CYP arachidonic acid metabolites in DA-induced Na+-K+-ATPase inhibition. We next examined whether 20-HETE is involved in the signaling pathways triggered by either D1 or D2 receptors. Neither fenoldopam nor quinpirole (D1 and D2 agonists, respectively, both 10−5 M) modified Na+-K+-ATPase activity when tried alone. However, coincubation of a threshold concentration of 20-HETE (10−9 M) with fenoldopam resulted in a synergistic inhibition of Na+-K+-ATPase activity (66 ± 2% of control activity), while 20-HETE plus quinpirole had no effect. Furthermore, 20-HETE (10−9 M) synergized with forskolin (10−5 M) and with the diacylglycerol analog 1-oleoyl-2-acetoyl- sn-glycerol (OAG; 10−11 M; 62.0 ± 5.3 and 69.9 ± 2.0% of control activity, respectively), indicating a cooperative role of 20-HETE with the D1-triggered pathways. In line with these results, no additive effect was observed when OAG and 20-HETE were combined at concentrations which per se produced maximal inhibition (10−6 M). These results demonstrate that the inhibition of Na+-K+-ATPase activity by DA in the proximal tubule may be the result of the synergism between 20-HETE and the D1 signaling pathway.

1975 ◽  
Vol 229 (3) ◽  
pp. 813-819 ◽  
Author(s):  
A Grandchamp ◽  
Scherrer ◽  
D Scholer ◽  
J Bornand

The effect of small changes in intraluminal hydrostatic pressure (P) on the tubular radius (r) and the net fluid reabsorption per unit of surface area of the tubular wall (Js) has been studied in the proximal tubule of the rat kidney. The split-drop method was used to simultaneously determine Js and r. Two standardized split-drop techniques A and B allow selective change in P. P was 31.6 +/- 1.3 mmHg in technique A and 15.5 +/- 1.5 in technique B. The pressure difference significantly affected the tubular radius; r was 21.9 +/- 0.4 and 18.6 +/- 0.5 mum in the split drop A and B, respectively. In contrast, net transepithelial fluid reabsorption Js was unchanged. Js amounted to 2.72 +/- 0.20, and 2.78 +/- 0.33 10(-5) cm3 cm-2 s-1 in split drop A and B. The absence of variations in Js could result from two opposite effects of pressure. P might enhance Js by increased ultrafiltration. However, the rise in r might decrease the density of the intraepithelial transport paths per unit area of tubular wall and therefore might decrease Js.


2001 ◽  
Vol 281 (6) ◽  
pp. F1117-F1122 ◽  
Author(s):  
Tong Wang ◽  
Max Hropot ◽  
Peter S. Aronson ◽  
Gerhard Giebisch

This study assessed the functional role of Na+/H+ exchanger (NHE) isoforms NHE3 and NHE2 in the proximal tubule, loop of Henle, and distal convoluted tubule of the rat kidney by comparing sensitivity of transport to inhibition by Hoe-694 (an agent known to inhibit NHE2 but not NHE3) and S-3226 (an agent with much higher affinity for NHE3 than NHE2). Rates of transport of fluid ( J v) and HCO[Formula: see text]( J HCO3) were studied by in situ microperfusion. In the proximal tubule, addition of ethylisopropylamiloride or S-3226 significantly reduced J v and J HCO3, but addition of Hoe-694 caused no significant inhibition. In the loop of Henle, J HCO3 was also inhibited by S-3226 and not by Hoe-694, although much higher concentrations of S-3226 were required than what was necessary to inhibit transport in the proximal tubule. In contrast, in the distal convoluted tubule, J HCO3was inhibited by Hoe-694 but not by S-3226. These results are consistent with the conclusion that NHE2 rather than NHE3 is the predominant isoform responsible for apical membrane Na+/H+ exchange in the distal convoluted tubule, whereas NHE3 is the predominant apical isoform in the proximal tubule and possibly also in the loop of Henle.


1999 ◽  
Vol 277 (2) ◽  
pp. F298-F302 ◽  
Author(s):  
Tong Wang ◽  
Chao-Ling Yang ◽  
Thecla Abbiati ◽  
Patrick J. Schultheis ◽  
Gary E. Shull ◽  
...  

NHE3 is the predominant isoform responsible for apical membrane Na+/H+exchange in the proximal tubule. Deletion of NHE3 by gene targeting results in an NHE3−/−mouse with greatly reduced proximal tubule[Formula: see text] absorption compared with NHE3+/+ animals (P. J. Schultheis, L. L. Clarke, P. Meneton, M. L. Miller, M. Soleimani, L. R. Gawenis, T. M. Riddle, J. J. Duffy, T. Doetschman, T. Wang, G. Giebisch, P. S. Aronson, J. N. Lorenz, and G. E. Shull. Nature Genet. 19: 282–285, 1998). The purpose of the present study was to evaluate the role of other acidification mechanisms in mediating the remaining component of proximal tubule [Formula: see text] reabsorption in NHE3−/− mice. Proximal tubule transport was studied by in situ microperfusion. Net rates of[Formula: see text] ( J HCO3) and fluid absorption ( J v) were reduced by 54 and 63%, respectively, in NHE3 null mice compared with controls. Addition of 100 μM ethylisopropylamiloride (EIPA) to the luminal perfusate caused significant inhibition of J HCO3 and J v in NHE3+/+ mice but failed to inhibit J HCO3 or J v in NHE3−/− mice, indicating lack of activity of NHE2 or other EIPA-sensitive NHE isoforms in the null mice. Addition of 1 μM bafilomycin caused a similar absolute decrement in J HCO3 in wild-type and NHE3 null mice, indicating equivalent rates of[Formula: see text] absorption mediated by H+-ATPase. Addition of 10 μM Sch-28080 did not reduce J HCO3 in either wild-type or NHE3 null mice, indicating lack of detectable H+-K+-ATPase activity in the proximal tubule. We conclude that, in the absence of NHE3, neither NHE2 nor any other EIPA-sensitive NHE isoform contributes to mediating [Formula: see text] reabsorption in the proximal tubule. A significant component of[Formula: see text] reabsorption in the proximal tubule is mediated by bafilomycin-sensitive H+-ATPase, but its activity is not significantly upregulated in NHE3 null mice.


1987 ◽  
Vol 65 (12) ◽  
pp. 2355-2362 ◽  
Author(s):  
John T. Brosnan

Measurement of the arteriovenous differences for free amino acids across rat kidney reveals that glycine and citrulline are removed and serine and arginine are added to the circulation. In addition, glutamine is taken up in large quantities by kidneys of animals that need to excrete large quantities of acid (e.g., diabetic animals, NH4Cl-fed animals, and animals fed a high protein diet). Glutamine is the major precursor of urinary ammonia and thus renal glutamine metabolism plays a key role in acid–base homeostasis. This process occurs primarily in the cells of the convoluted proximal tubule. Glutamine carbon is converted to glucose in acidotic rats and is totally oxidized in dogs. Regulation of glutamine metabolism occurs at two levels: acute regulation and chronic regulation. Acute regulation is, in part, mediated through a fall in intracellular [H+]. This activates α-ketoglutarate dehydrogenase and, ultimately, glutaminase. Chronic regulation involves induction of key enzymes, including, in the rat, glutaminase, glutamate dehydrogenase, and phosphoenolpyruvate carboxykinase. During the acidosis of prolonged starvation, the kidneys' requirement for glutamine must be met from muscle proteolysis and thus becomes a drain on lean body mass. Serine synthesis occurs by two separate pathways: from glycine by the combined actions of the glycine cleavage enzyme and serine hydroxymethyltransferase and from gluconeogenic precursors using the phosphorylated-intermediate pathway. Both pathways are located in the cells of the proximal tubule. Conversion of glycine to serine is ammoniagenic and the activity of the glycine cleavage enzyme is increased in acidosis. The function of serine synthesis by the phosphorylated-intermediate pathway is not apparent. Renal serine synthesis is quantitatively important; in man it is comparable to the serine obtained in the diet. Nevertheless, renal serine synthesis was not sensitive to serine status in rats as neither removal of dietary serine nor supplementation of the diet with serine affected renal serine synthesis. Arginine synthesis occurs from citrulline removed from the circulation. The citrulline is produced in the intestine. The kidney is the major endogenous source of arginine.


1995 ◽  
Vol 269 (5) ◽  
pp. F637-F643 ◽  
Author(s):  
H. F. Cantiello

In this report, the functional role of actin on Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase) activity was explored. The Na(+)- and K(+)-dependent, ouabain-sensitive ATP hydrolysis mediated by rat kidney Na(+)-K(+)-ATPase increased by 74% in the presence of previously unpolymerized actin (24 microM), whereas addition of polymerized actin was without effect. Addition of actin was associated instead with an increase in the affinity of the Na(+)-K(+)-ATPase for Na+ but not other enzymatic substates. A maximal stimulatory effect (296%) was observed either at an Na(+)-K(+)-ATPase:actin ratio of 1:50,000 or at lower ratios (1:625) by shifting from the E2 (K+ selective) to the E1 (Na+ selective) conformation of the enzyme. Immunoblotting of actin to the purified Na(+)-K(+)-ATPase suggested that this interaction may be linked to binding of actin to the enzyme, which was further supported by sequence analysis indicating putative actin-binding domains in the alpha-subunit of the enzyme. The interaction between actin and the Na(+)-K(+)-ATPase may imply a novel functional role of the cytoskeleton in the control of ion transport.


1990 ◽  
Vol 258 (5) ◽  
pp. F1181-F1187 ◽  
Author(s):  
H. R. Brady ◽  
B. C. Kone ◽  
M. E. Stromski ◽  
M. L. Zeidel ◽  
G. Giebisch ◽  
...  

Oxygen consumption (QO2) and net K+ transport were studied in rabbit proximal tubule suspensions to define the early effects of cisplatin on proximal tubule function. Cisplatin caused dose-dependent inhibition of QO2, which was delayed in onset. The concentration of cisplatin required for inhibition decreased as the duration of exposure was increased [40-min exposure, threshold concentration of 10(-4) M, inhibitor constant (Ki) of 10(-3) M; 4-h exposure, threshold concentration of 3 X 10(-5) M, Ki of 10(-4) M]. Both ouabain-sensitive and ouabain-insensitive QO2 were reduced, indicating inhibition of all adenosinetriphosphatases, including Na(+)- K(+)-ATPase activity. There was a parallel fall in ouabain-sensitive net K+ transport and cytosolic K+ content, confirming the latter observation. Na(+)-K(+)-ATPase activity was unchanged in cell membranes prepared by hypotonic lysis from cisplatin-treated tubules, indicating an indirect cytosol-dependent mechanism of enzyme inhibition. Nystatin-stimulated QO2 was reduced in cisplatin-treated tubules, excluding inhibition of Na+ entry as the mechanism of injury and suggesting mitochondrial injury. The latter was confirmed by measurement of carbonylcyanide-m-chlorophenylhydrazone (CCCP)-uncoupled QO2 in intact cells and ADP-stimulated (state 3) QO2 in digitonin-permeabilized tubules. Furthermore, by maximally stimulating mitochondrial respiration with CCCP and nystatin, it was possible to demonstrate mitochondrial injury at a time when basal QO2 and K+ transport were apparently normal. These data suggest that mitochondrial injury is a central event in cisplatin toxicity to the proximal tubule.


2003 ◽  
Vol 285 (1) ◽  
pp. F152-F165 ◽  
Author(s):  
Tae-Hwan Kwon ◽  
Jakob Nielsen ◽  
Young-Hee Kim ◽  
Mark A. Knepper ◽  
Jørgen Frøkiær ◽  
...  

The effect of ANG II treatment of rats for 7 days was examined with respect to the abundance and subcellular localization of key thick ascending limb (TAL) Na+ transporters. Rats were on a fixed intake of Na+ and water and treated with 0, 12.5, 25, 50 (ANG II-50), 100 (ANG II-100), and 200 (ANG II-200) ng·min-1·kg-1 ANG II (sc). Semiquantitative immunoblotting revealed that Na+/H+ exchanger 3 (NHE3) abundance in the inner stripe of the outer medulla (ISOM) of ANG II-treated rats was significantly increased: 179 ± 28 (ANG II-50, n = 5), 166 ± 23 (ANG II-100, n = 7), and 167 ± 19% (ANG II-200, n = 4) of control levels ( n = 6, P < 0.05), whereas lower doses of ANG II were ineffective. The abundance of the bumetanide-sensitive Na+-K+-2Cl- cotransporter (BSC-1) in the ISOM was also increased to 187 ± 28 (ANG II-50), 162 ± 23 (ANG II-100), and 166 ± 19% (ANG II-200) of control levels ( P < 0.05), but there were no changes in the abundance of Na+-K+-ATPase and the electroneutral Na+-HCO3 cotransporter NBCn1. Immunocytochemistry confirmed the increase in NHE3 and BSC-1 labeling in medullary TAL (mTAL). In the cortex and the outer strip of the outer medulla, NHE3 abundance was unchanged, whereas immunocytochemistry revealed markedly increased NHE3 labeling of the proximal tubule brush border, suggesting subcellular redistribution of NHE3 or differential protein-protein interaction. Despite this, ANG II-treated rats (50 ng·min-1·kg-1 for 5 days, n = 6) had a higher urinary pH compared with controls. NH4Cl loading completely blocked all effects of ANG II infusion on NHE3 and BSC-1, suggesting a potential role of pH as a mediator of these effects. In conclusion, increased abundance of NHE3 and BSC-1 in mTAL cells as well as increased NHE3 in the proximal tubule brush border may contribute to enhanced renal Na+ and HCO3 reabsorption in response to ANG II.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
N. L. Rukavina Mikusic ◽  
N. M. Kouyoumdzian ◽  
E. Rouvier ◽  
M. M. Gironacci ◽  
J. E. Toblli ◽  
...  

Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.


1997 ◽  
Vol 273 (2) ◽  
pp. F193-F199 ◽  
Author(s):  
H. Singh ◽  
S. L. Linas

Renal sodium excretion is regulated by the adrenergic system. We recently demonstrated the presence of functional beta 2-adrenoceptors (beta 2-AR) in cultured rat proximal tubule epithelial cells beta 2-AR activation resulted in increases in Na-K-adenosinetriphosphatase (Na-K-ATPase) activity and transcellular sodium transport as a consequence of increased apical sodium entry. The purpose of this study was to determine the role of protein kinase C (PKC) on beta 2-AR-dependent increases in Na-K-ATPase activity and sodium transport in proximal tubules. To determine the effect of PKC on basal function, cultured rat proximal tubule cells were exposed to phorbol 12-myristate 13-acetate (PMA). PMA increased apical Na entry (+/-80%), decreased Na-K-ATPase activity (+/-25%), and prevented increases in Na-K-ATPase activity after sodium entry facilitation with monensin. Decreases in Na-K-ATPase activity were associated with decreases in sodium transport (+/-30%). To determine whether beta 2-AR function was transduced by PKC, PKC activity was measured in cells exposed to the selective beta 2-AR agonist metaproterenol. Metaproterenol caused increases in PKC activity, which were blocked by a beta 2-AR but not by a beta 1-AR-receptor antagonist. beta 2-AR-dependent increases in apical Na entry, Na-K-ATPase activity, and sodium transport were blocked by calphostin C or staurosporine. To determine whether PKC had additional effects on beta 2-AR function, cells were exposed to metaproterenol and PMA. Metaproterenol-induced increases in Na-K-ATPase activity and sodium transport were blocked by PMA. In conclusion, beta 2-AR-mediated increases in Na-K-ATPase activity and sodium flux are transduced by PKC acting through increases in apical Na entry. However, activation of PKC by phorbol esters inhibits beta 2-AR-dependent increases in Na-K-ATPase activity and sodium transport.


Sign in / Sign up

Export Citation Format

Share Document