scholarly journals TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases

2015 ◽  
Vol 309 (5) ◽  
pp. F393-F397 ◽  
Author(s):  
Daria V. Ilatovskaya ◽  
Alexander Staruschenko

Podocytes (terminally differentiated epithelial cells of the glomeruli) play a key role in the maintenance of glomerular structure and permeability and in the incipiency of various renal abnormalities. Injury to podocytes is considered a major contributor to the development of kidney disease as their loss causes proteinuria and progressive glomerulosclerosis. The physiological function of podocytes is critically dependent on proper intracellular calcium handling; excessive calcium influx in these cells may result in the effacement of foot processes, apoptosis, and subsequent glomeruli damage. One of the key proteins responsible for calcium flux in the podocytes is transient receptor potential cation channel, subfamily C, member 6 (TRPC6); a gain-of-function mutation in TRPC6 has been associated with the onset of the familial forms of focal segmental glomerulosclerosis (FSGS). Recent data also revealed a critical role of this channel in the onset of diabetic nephropathy. Therefore, major efforts of the research community have been recently dedicated to unraveling the TRPC6-dependent effects in the initiation of podocyte injury. This mini-review focuses on the TRPC6 channel in podocytes and colligates recent data in an attempt to shed some light on the mechanisms underlying the pathogenesis of TRPC6-mediated glomeruli damage and its potential role as a therapeutic target for the treatment of chronic kidney diseases.

2018 ◽  
Vol 29 (8) ◽  
pp. 2099-2109 ◽  
Author(s):  
Kim A.T. Verheijden ◽  
Ramon Sonneveld ◽  
Marinka Bakker-van Bebber ◽  
Jack F.M. Wetzels ◽  
Johan van der Vlag ◽  
...  

BackgroundThe hallmark of podocytopathies, such as FSGS, is podocyte injury resulting in proteinuria. Transient receptor potential channel C6 (TRPC6) is a calcium-conducting ion channel expressed at the slit diaphragm. TRPC6 gain-of-function mutations and glomerular TRPC6 overexpression are associated with proteinuria. However, the pathways linking TRPC6 to podocyte injury, which is characterized by loss of the slit diaphragm protein nephrin, activation of several intracellular pathways (including calcineurin-NFAT signaling), and cytoskeletal rearrangement, remain elusive.MethodsWe tested whether the calcium-dependent protease calpain-1 mediates TRPC6-dependent podocyte injury in human and experimental FSGS and cultured podocytes.ResultsCompared with kidneys of healthy controls, kidneys of patients with FSGS had increased TRPC6 expression, increased calpain and calcineurin activity, and reduced expression of the calpain target Talin-1, which links the actin cytoskeleton to integrins and is critical for podocyte cytoskeletal stability. In a rat model of human FSGS, increased glomerular and urinary calpain activity associated with reduced Talin-1 abundance, enhanced calcineurin activity, and increased proteinuria. Treatment with the calpain inhibitor calpeptin prevented these effects. In cultured podocytes, pharmacologic stimulation of TRPC6-dependent calcium influx increased calpain-1 and calcineurin activity and reduced Talin-1 expression, and knockdown of TRPC6 or calpain-1 prevented these effects.ConclusionsWe elucidated a novel mechanism that links TRPC6 activity to calpain-1 activation and through Talin-1 loss and possibly, calcineurin activation, the podocyte injury characterizing FSGS. Therefore, calpain-1 and/or TRPC6 inhibition could be future therapeutic options to treat patients with FSGS or other podocytopathies.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Sumita Mishra ◽  
Junfeng Ma ◽  
Kei Akiyoshi ◽  
Federica Farinelli ◽  
Rick Page ◽  
...  

O-GlcNAcylation is a dynamic, reversible posttranslational modification (PTM) that regulates a multitude of biological processes. Fluctuations in O-GlcNAC of various calcium handling proteins impact their functionality in cardiomyocytes. Here, we show for the first time that TRPC6, a nonselective receptor-operated cation channel and mediator of hypertrophy and fibrosis, is constitutively O-GlcNAcylated in the ankyrin repeat domain (AR4), at Ser 14, Thr 70, and Thr 221 within the N-terminal cytoplasmic segment. Of these, only substitution of Thr 221 with alanine (T221A) results in a change of function, notably a hyperactive TRPC6 channel with 5X greater increase in consequent NFAT promoter activity, which is a marker of TRPC6 calcium signaling. Patch-clamp analysis of T221A mutant channels found a 75-80% increased conductance compared to WT. Myocardial injection of T221A in homozygous TRPC6 KO mice by AAV-9 mediated gene transfer results in systolic dysfunction, hypertrophy, and cardiac fibrosis, by loss of OGlcNAc modification at site T221. T221 is highly conserved across species and found in the AR4 domain, which forms the core structure of TRPC6 intracellular domain. Mutating the site in its closest homologs, TRPC3 and TRPC7, also activates channel activity. T221 O-GlcNAcylation also protects the nascent protein from premature proteasomal degradation. Molecular modeling from the crystal structure of human TRPC6 predicts that OGlcNACylation stabilizes electrostatic interactions with the 193-203 loop near AR4, and loop connecting AR4 to the linker helix 1 (LH1) at S199, E200, and E246. Mutating these sites to alanine also increases TRPC6-NFAT signaling similar to what was observed in the T221A mutant. In summary, this study highlights that O-GlcNAcylation of TRPC6 is an important PTM needed to stabilize channel function, and its decline results in gain-of-function related diseases.


2021 ◽  
Author(s):  
Jochen Reiser ◽  
Onur K Polat ◽  
Elena Isaeva ◽  
Ke Zhu ◽  
Manuel Noben ◽  
...  

Background Transient receptor potential channel 5 (TRPC5) is a non-selective cationic ion channel expressed in brain, kidney and other organs where its activation underlies podocyte injury in chronic kidney diseases. Specifically, it has been suggested that a podocyte TRPC5 plasma membrane relocation and channel activation following injury results from activation of Rac-1, propagating podocyte dysfunction and proteinuria. However, previous TRPC5 transgenic mouse studies had questioned a pathogenic role for TRPC5 in podocytes. This investigation was designed to specifically evaluate podocyte Rac-1 activation in the context of functional TRPC5 or a TRPC5 pore mutant to assess effects on proteinuria. Materials and Methods We employed single cell patch-clamp studies of cultured podocytes and studied proteinuria in transgenic mouse models to characterize the effects of TRPC5 following podocyte Rac-1 activation. Results Inhibition of TRPC5 by small molecules reportedly ameliorated proteinuria in murine models of proteinuric kidney diseases. In order to directly examine TRPC5 function following Rac-1-induced podocyte injury, we analyzed TRPC5 inhibition in podocyte specific Rac-1 (active) transgenic mice. In addition, we generated a double-transgenic mouse constitutively overexpressing either TRPC5 (TRPC5WT) or a TRPC5 dominant-negative pore mutant (TRPC5DN) in concert with podocyte specific and inducible activation of active Rac-1 (Rac-1Dtg). In electrophysiological experiments, active TRPC5 was detected in primary podocytes overexpressing TRPC5 but not in podocytes with endogenous TRPC5 expression, nor with Rac-1 overexpressing podocytes. TRPC5 inhibition did not change proteinuria in mice with active podocyte Rac-1, nor did an increase or loss of TRPC5 activity affected podocyte injury in Rac-1Dtg animals. Administration of TRPC5 inhibitors, ML204 and AC1903, did not alleviate podocyte Rac-1 induced proteinuria. Conclusion TRPC5 inhibition did not modify podocyte Rac-1 induced proteinuria in mice.


2016 ◽  
Vol 310 (11) ◽  
pp. F1157-F1167 ◽  
Author(s):  
Yiming Zhou ◽  
Anna Greka

Calcium ions (Ca2+) are crucial for a variety of cellular functions. The extracellular and intracellular Ca2+ concentrations are thus tightly regulated to maintain Ca2+ homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca2+ homeostasis by filtration and reabsorption. Approximately 60% of the Ca2+ in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca2+ is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca2+-permeable ion channel families as important regulators of Ca2+ homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca2+-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Haihong Wang ◽  
Xinyi Zhou ◽  
Hui Li ◽  
Xiaowei Qian ◽  
Yan Wang ◽  
...  

Background. Pyroptosis, a new form of cell death, which has special morphological characteristics, depends on caspase-1 activation and occupies an important role in inflammatory immune diseases and ischemia-reperfusion injury. ROS is a common activator of NLR/caspase-1. Transient receptor potential melastatin 2 (TRPM2), a selective cation channel, is involved in inflammatory regulation. This study was designed to explore the role of TRPM2 in activating caspase-1 and caspase-1-dependent pyroptosis of mouse BMDMs. Methods. BMDMs isolated from WT and TRPM2−/− mice were treated with LPS and ATP, along with ROS inhibitor (NAC and DPI), caspase-1 inhibitor (Z-YVAD), or not. The activation of caspase-1 was measured by western blot. EtBr and EthD-2 staining were used to assess the incidence of pyroptosis. Results. Compared with WT, the activated caspase-1-P10 was higher and the percentage of EtBr positive cells was also increased in TRPM2−/− group, which were both inhibited by Z-YVAD, NAC, or DPI. ASC oligomerization was increased in TRPM2−/− group. Conclusion. Deletion of TRPM2 can enhance the activation of caspase-1 and pyroptosis, which may be via modulating ROS production, suggesting that TRPM2 plays a critical role in immune adjustment.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Jack Rubinstein ◽  
Vivek P Singh ◽  
Valerie M Lasko ◽  
Sheryl E Koch ◽  
Evangelia Kranias ◽  
...  

Background: TRPV2 is a Ca2+ channel that we have recently discovered in cardiomyocytes. The absence of this channel negatively impacts baseline contractility while stimulation results in a positive inotropic response. What remains to be established is the mechanism of this receptor and its role, if any, in the development of hypertrophy. Methods and Results: We obtained isolated cardiomyocytes from wild type (WT) and TRPV2-/- (KO) mice and found that the sarcoplasmic reticulum Ca2+ content and Ca2+ transients were reduced along with fractional shortening in the KO cardiomyocytes (figure, panels A, B, C). In vivo echocardiography confirmed a decrease in ejection fraction in KO mice in comparison to the WT counterparts (panel D). The relevance of these findings was examined in 6 WT and 5 KO mice subjected to transverse aortic constriction (TAC). These mice were followed by echocardiography weekly for a total of 8 weeks post TAC. At the conclusion, the hearts were obtained for histological and molecular analyses. We demonstrated that the KO mice developed less LV hypertrophy in comparison to WT (via echocardiography and by heart weight/body weight ratios) (figure, panels E and F). Importantly, there was a 5 fold increase in TRPV2 expression assessed by PCR in TAC WT hearts, compared to WT not subjected to TAC (0.72±0.10 vs. 0.13±0.04; p<0.01). This suggests a role for TRPV2 not only in contractility, but also in the development of hypertrophy. Conclusions: We have discovered a novel cardiac channel that alters Ca2+ cycling and is capable of modulating cardiomyocyte contractility and hypertrophy, which could lead to novel therapeutic options in heart failure and hypertrophy.


2020 ◽  
Vol 21 (10) ◽  
pp. 3646
Author(s):  
Jung Yun Kang ◽  
Namju Kang ◽  
Yu-Mi Yang ◽  
Jeong Hee Hong ◽  
Dong Min Shin

The increasing of intracellular calcium concentration is a fundamental process for mediating osteoclastogenesis, which is involved in osteoclastic bone resorption. Cytosolic calcium binds to calmodulin and subsequently activates calcineurin, leading to NFATc1 activation, a master transcription factor required for osteoclast differentiation. Targeting the various activation processes in osteoclastogenesis provides various therapeutic strategies for bone loss. Diverse compounds that modulate calcium signaling have been applied to regulate osteoclast differentiation and, subsequently, attenuate bone loss. Thus, in this review, we summarized the modulation of the NFATc1 pathway through various compounds that regulate calcium signaling and the calcium influx machinery. Furthermore, we addressed the involvement of transient receptor potential channels in osteoclastogenesis.


2019 ◽  
Vol 20 (7) ◽  
pp. 1767 ◽  
Author(s):  
Takuya Kameda ◽  
Joel Zvick ◽  
Miriam Vuk ◽  
Aleksandra Sadowska ◽  
Wai Kit Tam ◽  
...  

Transient receptor potential (TRP) channels have emerged as potential sensors and transducers of inflammatory pain. The aims of this study were to investigate (1) the expression of TRP channels in intervertebral disc (IVD) cells in normal and inflammatory conditions and (2) the function of Transient receptor potential ankyrin 1 (TRPA1) and Transient receptor potential vanilloid 1 (TRPV1) in IVD inflammation and matrix homeostasis. RT-qPCR was used to analyze human fetal, healthy, and degenerated IVD tissues for the gene expression of TRPA1 and TRPV1. The primary IVD cell cultures were stimulated with either interleukin-1 beta (IL-1β) or tumor necrosis factor alpha (TNF-α) alone or in combination with TRPA1/V1 agonist allyl isothiocyanate (AITC, 3 and 10 µM), followed by analysis of calcium flux and the expression of inflammation mediators (RT-qPCR/ELISA) and matrix constituents (RT-qPCR). The matrix structure and composition in caudal motion segments from TRPA1 and TRPV1 wild-type (WT) and knock-out (KO) mice was visualized by FAST staining. Gene expression of other TRP channels (A1, C1, C3, C6, V1, V2, V4, V6, M2, M7, M8) was also tested in cytokine-treated cells. TRPA1 was expressed in fetal IVD cells, 20% of degenerated IVDs, but not in healthy mature IVDs. TRPA1 expression was not detectable in untreated cells and it increased upon cytokine treatment, while TRPV1 was expressed and concomitantly reduced. In inflamed IVD cells, 10 µM AITC activated calcium flux, induced gene expression of IL-8, and reduced disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and collagen 1A1, possibly via upregulated TRPA1. TRPA1 KO in mice was associated with signs of degeneration in the nucleus pulposus and the vertebral growth plate, whereas TRPV1 KO did not show profound changes. Cytokine treatment also affected the gene expression of TRPV2 (increase), TRPV4 (increase), and TRPC6 (decrease). TRPA1 might be expressed in developing IVD, downregulated during its maturation, and upregulated again in degenerative disc disease, participating in matrix homeostasis. However, follow-up studies with larger sample sizes are needed to fully elucidate the role of TRPA1 and other TRP channels in degenerative disc disease.


Sign in / Sign up

Export Citation Format

Share Document