scholarly journals Role of FQQI motif in the internalization, trafficking, and signaling of guanylyl-cyclase/natriuretic peptide receptor-A in cultured murine mesangial cells

2016 ◽  
Vol 310 (1) ◽  
pp. F68-F84 ◽  
Author(s):  
Indra Mani ◽  
Renu Garg ◽  
Kailash N. Pandey

Binding of the cardiac hormone atrial natriuretic peptide (ANP) to transmembrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), produces the intracellular second messenger cGMP in target cells. To delineate the critical role of an endocytic signal in intracellular sorting of the receptor, we have identified a FQQI (Phe790, Gln791, Gln792, and Ile793) motif in the carboxyl-terminal region of NPRA. Mouse mesangial cells (MMCs) were transiently transfected with the enhanced green fluorescence protein (eGFP)-tagged wild-type (WT) and mutant constructs of eGFP-NPRA. The mutation FQQI/AAAA, in the eGFP-NPRA cDNA sequence, markedly attenuated the internalization of mutant receptors by almost 49% compared with the WT receptor. Interestingly, we show that the μ1B subunit of adaptor protein-1 binds directly to a phenylalanine-based FQQI motif in the cytoplasmic tail of the receptor. However, subcellular trafficking indicated that immunofluorescence colocalization of the mutated receptor with early endosome antigen-1 (EEA-1), lysosome-associated membrane protein-1 (LAMP-1), and Rab 11 marker was decreased by 57% in early endosomes, 48% in lysosomes, and 42% in recycling endosomes, respectively, compared with the WT receptor in MMCs. The receptor containing the mutated motif (FQQI/AAAA) also produced a significantly decreased level of intracellular cGMP during subcellular trafficking than the WT receptor. The coimmunoprecipitation assay confirmed a decreased level of colocalization of the mutant receptor with subcellular compartments during endocytic processes. The results suggest that the FQQI motif is essential for the internalization and subcellular trafficking of NPRA during the hormone signaling process in intact MMCs.

2015 ◽  
Vol 35 (5) ◽  
Author(s):  
Indra Mani ◽  
Renu Garg ◽  
Satyabha Tripathi ◽  
Kailash N. Pandey

Atrial natriuretic peptide (ANP) modulates blood pressure and fluid volume by activation of natriuretic peptide receptor-A (NPRA). Immunofluorescence (IF) studies reveal that NPRA is internalized and redistributed into subcellular compartments with concurrent production of cGMP.


2018 ◽  
Vol 50 (11) ◽  
pp. 913-928 ◽  
Author(s):  
Kailash N. Pandey

Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.


2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Shravya Vinnakota ◽  
Horng H Chen

Abstract The natriuretic peptide (NP) system is composed of 3 distinct peptides (atrial natriuretic peptide or ANP, B-type natriuretic peptide or BNP, and C-type natriuretic peptide or CNP) and 3 receptors (natriuretic peptide receptor-A or NPR-A or particulate guanynyl cyclase-A natriuretic peptide receptor-B or NPR-B or particulate guanynyl cyclase-B, and natriuretic peptide receptor-C or NPR-C or clearance receptor). ANP and BNP function as defense mechanisms against ventricular stress and the deleterious effects of volume and pressure overload on the heart. Although the role of NPs in cardiovascular homeostasis has been extensively studied and well established, much remains uncertain about the signaling pathways in pathological states like heart failure, a state of impaired natriuretic peptide function. Elevated levels of ANP and BNP in heart failure correlate with disease severity and have a prognostic value. Synthetic ANP and BNP have been studied for their therapeutic role in hypertension and heart failure, and promising trials are under way. In recent years, the expression of ANP and BNP in human adipocytes has come to light. Through their role in promotion of adipocyte browning, lipolysis, lipid oxidation, and modulation of adipokine secretion, they have emerged as key regulators of energy consumption and metabolism. NPR-A signaling in skeletal muscles and adipocytes is emerging as pivotal to the maintenance of long-term insulin sensitivity, which is disrupted in obesity and reduced glucose-tolerance states. Genetic variants in the genes encoding for ANP and BNP have been associated with a favorable cardiometabolic profile. In this review, we discuss several pathways that have been proposed to explain the role of NPs as endocrine networkers. There is much to be explored about the therapeutic role of NPs in improving metabolic milieu.


Sign in / Sign up

Export Citation Format

Share Document