scholarly journals Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model

2013 ◽  
Vol 304 (7) ◽  
pp. F938-F947 ◽  
Author(s):  
Diping Wang ◽  
Gina M. Warner ◽  
Ping Yin ◽  
Bruce E. Knudsen ◽  
Jingfei Cheng ◽  
...  

Renal artery stenosis (RAS) is an important cause of chronic renal dysfunction. Recent studies have underscored a critical role for CCL2 (MCP-1)-mediated inflammation in the progression of chronic renal damage in RAS and other chronic renal diseases. In vitro studies have implicated p38 MAPK as a critical intermediate for the production of CCL2. However, a potential role of p38 signaling in the development and progression of chronic renal disease in RAS has not been previously defined. We sought to test the hypothesis that inhibition of p38 MAPK ameliorates chronic renal injury in mice with RAS. We established a murine RAS model by placing a cuff on the right renal artery and treated mice with the p38 inhibitor SB203580 or vehicle for 2 wk. In mice treated with vehicle, the cuffed kidney developed interstitial fibrosis, tubular atrophy, and interstitial inflammation. In mice treated with SB203580, the RAS-induced renal atrophy was reduced (70% vs. 39%, P < 0.05). SB203580 also reduced interstitial inflammation and extracellular matrix deposition but had no effect on the development of hypertension. SB203580 partially blocked the induction of CCL2, CCL7 (MCP-3), CC chemokine receptor 2 (CCR2), and collagen 4 mRNA expression in the cuffed kidneys. In vitro, blockade of p38 hindered both TNF-α and TGF-β-induced CCL2 upregulation. Based on these observations, we conclude that p38 MAPK plays a critical role in the induction of CCL2/CCL7/CCR2 system and the development of interstitial inflammation in RAS.

2014 ◽  
Vol 128 (1-2) ◽  
pp. 57-66 ◽  
Author(s):  
Rui Cui ◽  
Xiao Chen ◽  
Lei Peng ◽  
Jing Ma ◽  
Dan Zhu ◽  
...  

Radiology ◽  
1995 ◽  
Vol 194 (1) ◽  
pp. 157-163 ◽  
Author(s):  
J A Brink ◽  
J T Lim ◽  
G Wang ◽  
J P Heiken ◽  
L A Deyoe ◽  
...  

2016 ◽  
Vol 311 (3) ◽  
pp. H815-H821 ◽  
Author(s):  
Zhiheng Ma ◽  
Xiaogao Jin ◽  
Liqun He ◽  
Yanlin Wang

Recent studies have shown that inflammation plays a critical role in the initiation and progression of hypertensive kidney disease, including renal artery stenosis. However, the signaling mechanisms underlying the induction of inflammation are poorly understood. We found that CXCL16 was induced in the kidney in a murine model of renal artery stenosis. To determine whether CXCL16 is involved in renal injury and fibrosis, wild-type and CXCL16 knockout mice were subjected to renal artery stenosis induced by placing a cuff on the left renal artery. Wild-type and CXCL16 knockout mice had comparable blood pressure at baseline. Renal artery stenosis caused an increase in blood pressure that was similar between wild-type and CXCL16 knockout mice. CXCL16 knockout mice were protected from RAS-induced renal injury and fibrosis. CXCL16 deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the stenotic kidneys, which was associated with less expression of extracellular matrix proteins. Furthermore, CXCL16 deficiency inhibited infiltration of F4/80+ macrophages and CD3+ T cells in the stenotic kidneys compared with those of wild-type mice. Taken together, our results indicate that CXCL16 plays a pivotal role in the pathogenesis of renal artery stenosis-induced renal injury and fibrosis through regulation of bone marrow-derived fibroblast accumulation and macrophage and T-cell infiltration.


2011 ◽  
Vol 300 (6) ◽  
pp. F1394-F1401 ◽  
Author(s):  
Alfonso Eirin ◽  
Xiang-Yang Zhu ◽  
Victor H. Urbieta-Caceres ◽  
Joseph P. Grande ◽  
Amir Lerman ◽  
...  

Percutaneous transluminal renal stenting (PTRS) does not consistently improve renal function in patients with atherosclerotic renovascular disease, but the mechanisms underlying irreversible kidney injury have not been fully elucidated. We hypothesized that renal dysfunction after PTRS is linked to ongoing renal microvascular (MV) remodeling. Pigs were studied after 10 wk of atherosclerosis and renal artery stenosis (ARAS), ARAS treated with PTRS 4 wk earlier, and normal controls ( n = 10 each). Renal blood flow (RBF) and glomerular filtration rate (GFR) were studied using multidetector computer tomography. Renal microvascular architecture (micro-CT), angiogenic activity, oxidative stress, and fibrosis were evaluated ex vivo. Four weeks after PTRS, blood pressure was normalized. However, GFR and RBF remained similarly decreased in untreated ARAS and ARAS+PTRS ( P < 0.05 vs. normal). MV rarefaction was unaltered after revascularization, and the spatial density of outer cortical microvessels correlated with residual GFR. Interstitial fibrosis and altered expression of proangiogenic and profibrotic factors persisted after PTRS. Tubulointerstitial injury in ARAS persisted 4 wk after mechanically successful PTRS, and vessel loss correlated with residual renal dysfunction. MV loss and fibrosis in swine ARAS might account for persistent renal dysfunction after PTRS and underscore the need to assess renal parenchymal disease before revascularization.


2019 ◽  
Vol 20 (20) ◽  
pp. 5069 ◽  
Author(s):  
Arash Aghajani Nargesi ◽  
Xiang-Yang Zhu ◽  
Yuanhang Liu ◽  
Hui Tang ◽  
Kyra L. Jordan ◽  
...  

Background: Scattered tubular-like cells (STCs) proliferate and differentiate to support neighboring injured renal tubular cells during recovery from insults. Renal artery stenosis (RAS) induces renal ischemia and hypertension and leads to loss of kidney function, but whether RAS alters renal endogenous repair mechanisms, such as STCs, remains unknown. We hypothesize that RAS in swine modifies the messenger RNA (mRNA) profile of STCs, blunting their in vitro reparative capacity. Methods: CD24+/CD133+ STCs were isolated from pig kidneys after 10-weeks of RAS or sham (n = 3 each) and their gene cargo analyzed using high-throughput mRNAseq. Expression profiles for upregulated and downregulated mRNAs in RAS-STCs were functionally interpreted by gene ontology analysis. STC activation was assessed by counting the total number of STCs in pig kidney sections using flow cytometry, whereas cell proliferation was assessed in vitro. Results: Of all expressed genes, 1430 genes were upregulated and 315 downregulated in RAS- versus Normal-STCs. Expression of selected candidate genes followed the same fold change directions as the mRNAseq findings. Genes upregulated in RAS-STCs were involved in cell adhesion, extracellular matrix remodeling, and kidney development, whereas those downregulated in RAS-STCs are related to cell cycle and cytoskeleton. The percentage of STCs from dissociated kidney cells was higher in RAS versus Normal pigs, but their proliferation rate was blunted. Conclusions: Renal ischemia and hypertension in swine induce changes in the mRNA profile of STCs, associated with increased STC activation and impaired proliferation. These observations suggest that RAS may alter the reparative capacity of STCs.


Sign in / Sign up

Export Citation Format

Share Document