In vivo proximal tubular fluid-to-plasma chloride concentration gradient in the rabbit

1982 ◽  
Vol 242 (6) ◽  
pp. F575-F579
Author(s):  
R. C. Vari ◽  
C. E. Ott

It has been reported that the concentration of chloride in the proximal tubule is greater than that in plasma in several mammalian species. Much of the theory concerning fluid and electrolyte reabsorption in the proximal tubule is based on data taken from in vitro isolated proximal tubules of the rabbit nephron. This study measured in vivo the rabbit proximal tubule fluid-to-ultrafiltrate chloride concentration ratio [(TF/UF)Cl] and its relationship to proximal tubule length as estimated by the tubule fluid-to-plasma inulin concentration ratio [(TF/P)In]. From six rabbits, 19 random proximal tubules were micropunctured and analyzed for inulin and chloride concentrations, the latter being measured by microelectrometric titration. Plasma ultrafiltrate was determined by correcting plasma chloride concentration for protein concentration. The average single nephron filtration rate was 20.2 +/- 0.8 nl/min. The (TF/UF)Cl ratio was 1.10 +/- 0.03, which was significantly different from unity. Furthermore, regression analysis yielded no significant correlation between the (TF/UF(Cl and (TF/P)In ratio. This study demonstrates that a tubule lumen-to-plasma chloride concentration gradient exists in the in vivo proximal tubule of the rabbit that is apparently established early and is not correlated with proximal tubule length.

1986 ◽  
Vol 251 (4) ◽  
pp. F718-F724
Author(s):  
J. E. Bourdeau

Partes rectae of cortical segment 2 proximal tubules were dissected from rabbit kidneys and perfused in vitro. Ca concentrations of perfused and collected fluids were measured by continuous-flow microcolorimetry. Epithelial Ca permeability (P) was estimated from the bath-to-lumen movement of 45Ca. The transepithelial voltage (psi) and [Ca2+] difference were varied simultaneously by changing perfusate composition. Tubules that were perfused and bathed with an identical artificial ultrafiltrate of plasma displayed a lumen-negative psi, a collectate [Ca] greater than perfusate, and net Ca secretion. Tubules perfused with "late" proximal tubule fluid (high [Cl], low [HCO3], low concentrations of Na+-cotransported solutes) demonstrated a lumen-positive psi, a perfusate [Ca2+] greater than the bath, a collectate [Ca] less than perfusate, and net Ca absorption. Under each of these conditions, net Ca flux was in the direction predicted by the experimentally measured driving forces for diffusional Ca transport. Tubules that were cooled while being perfused with late proximal tubule fluid showed an increased lumen-positive psi but reduced net Ca absorption. The latter finding was consistent with reduced Ca ion diffusion related to a smaller P at the lower temperature. I conclude that Ca2+ diffusion is an important component of net Ca absorption in this segment of the nephron.


2001 ◽  
Vol 360 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Agnès CONJARD ◽  
Mireille MARTIN ◽  
Jérôme GUITTON ◽  
Gabriel BAVEREL ◽  
Bernard FERRIER

Recent studies in vivo have suggested that, in humans in the postabsorptive state, the kidneys contribute a significant fraction of systemic gluconeogenesis, and that the stimulation of renal gluconeogenesis may fully explain the increase in systemic gluconeogenesis during adrenaline infusion. Given the potential importance of human renal gluconeogenesis in various physiological and pathophysiological situations, we have conducted a study in vitro to further characterize this metabolic process and its regulation. For this, successive segments (S1, S2 and S3) of human proximal tubules were dissected and incubated with physiological concentrations of glutamine or lactate, two potential gluconeogenic substrates that are taken up by the human kidney in vivo, and glucose production was measured. The effects of adrenaline, noradrenaline and cAMP, a well established stimulator of gluconeogenesis in animal kidney tubules, were also studied in suspensions of human renal proximal tubules. The results indicate that the three successive segments have about the same capacity to synthesize glucose from glutamine; by contrast, the S2 and S3 segments synthesize more glucose from lactate than the S1 segment. In the S2 and S3 segments, lactate appears to be a better gluconeogenic precursor than glutamine. The addition of cAMP, but not of adrenaline or noradrenaline, led to the stimulation of gluconeogenesis from lactate and glutamine by human proximal tubules. These results indicate that, in the human kidney in vivo, lactate might be the main gluconeogenic precursor, and that the stimulation of renal gluconeogenesis observed in vivo upon adrenaline infusion may result from an indirect action on the renal proximal tubule.


2016 ◽  
Vol 311 (3) ◽  
pp. F640-F651 ◽  
Author(s):  
Richard A. Zager ◽  
Ali C. M. Johnson ◽  
Kirsten Frostad

α1-Microglobulin (A1M) is a low-molecular-weight heme-binding antioxidant protein that is readily filtered by the glomerulus and reabsorbed by proximal tubules. Given these properties, recombinant A1M (rA1M) has been proposed as a renal antioxidant and therapeutic agent. However, little direct evidence to support this hypothesis exists. Hence, we have sought “proof of concept” in this regard. Cultured proximal tubule (HK-2) cells or isolated mouse proximal tubule segments were challenged with a variety of prooxidant insults: 1) hemin, 2) myoglobin; 3) “catalytic” iron, 4) H2O2/Fenton reagents, 5) a Ca2+ ionophore, 6) antimycin A, or 7) hypoxia (with or without rA1M treatment). HK-2 injury was gauged by the percent lactate dehydrogenase release and 4,5-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide uptake. In vivo protection was sought in rA1M-treated mice subjected to 1) graded myohemoglobinura (2, 4, 8, or 9 ml/kg glycerol injection), 2) purified myoglobinemia/uria, or 3) endotoxemia. In vivo injury was assessed by blood urea nitrogen, creatinine, and the expression of redox-sensitive genes (heme oxygenase-1, neutrophil gelatinase-associated lipocalin, and monocyte chemoattractant protein-1 mRNAs). Although rA1M totally blocked in vitro hemin toxicity, equimolar albumin (another heme binder) or 10% serum induced equal protection. rA1M failed to mitigate any nonhemin forms of either in vitro or in vivo injury. A1M appeared to be rapidly degraded within proximal tubules (by Western blot analysis). Surprisingly, rA1M exerted select injury-promoting effects (increased in vitro catalytic iron/antimycin toxicities and increased in vivo monocyte chemoattractant protein-1/neutrophil gelatinase-associated lipocalin mRNA expression after glycerol or endotoxin injection). We conclude that rA1M has questionable utility as a renal antioxidant/cytoprotective agent, particularly in the presence of larger amounts of competitive free heme (e.g., albumin) binders.


1987 ◽  
Vol 253 (6) ◽  
pp. F1120-F1128
Author(s):  
F. A. Carone ◽  
E. I. Christensen ◽  
G. Flouret

High-performance liquid chromatography (HPLC) analysis revealed that [3,4,5-3H-Phe3,Arg8]vasopressin ([3H]AVP) was not degraded by isolated renal brush-border membranes or by a cortical lysosomal fraction in vitro; however, in the presence of 1 mM reduced glutathione, [3H]AVP was degraded by both preparations. Renal cortical homogenates in vitro and luminal peptidases of proximal tubule in vivo degraded [3H]AVP and in both instances yielded phenylalanine, hexapeptide AVP 1-6, heptapeptide AVP 1-7, octapeptide AVP 1-8, and two uncharacterized products X and Y. These data suggest that filtered AVP is reduced in the proximal tubule by a reduced glutathione-dependent transhydrogenase and subsequently cleaved to [3H]Phe by tubular aminopeptidases. Following microinfusion of [3H]AVP into proximal tubules, 15.7% of the label was absorbed. Five and fifteen minutes after infusion of [3H]AVP, sequestration of total label in proximal tubules was 4.5 and 2.1%, respectively, and quantitative electron microscope autoradiography revealed accumulation of grains over apical endocytic vacuoles and lysosomes consistent with endocytic uptake and rapid lysosomal degradation of AVP and/or a large metabolite. Thus, enzymatic cleavage of AVP by luminal and lysosomal peptidases in proximal tubules could involve disulfide bond, C-terminal, and N-terminal loci.


1987 ◽  
Vol 252 (3) ◽  
pp. F501-F508
Author(s):  
K. Bomsztyk ◽  
E. R. Swenson ◽  
M. B. Calalb

Most of filtered bicarbonate is reabsorbed in the early proximal tubule, and the high blood-to-lumen HCO3 concentration gradient generated is then maintained in the distal proximal tubule. To determine the factor(s) that prevent reaccumulation of HCO3 in the lumen, surface proximal tubules of the rat kidney were perfused in vivo. All perfusion solutions were similar in ionic composition to late proximal tubule fluid but, instead of HCO3, contained sulfate (SO4) or N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Bicarbonate concentration ([HCO3]L) was measured by microcalorimetry, while collected fluid PCO2 was maintained in vitro at either renal cortical or atmospheric levels. A new single microelectrode was used to simultaneously measure PCO2 and luminal pH (pHL). With SO4 solution, pHL was 6.84 +/- 0.06, PCO2 was 50.8 +/- 5.0 mmHg, and [HCO3]L was 8.7 +/- 0.9 mM. When 10(-3) M acetazolamide (ATZ) was added to the perfusate, pHL was 7.00 +/- 0.08, PCO2 remained unchanged, [HCO3]L was 12.1 +/- 1.3 mM, and the rate of HCO3 accumulation increased by approximately 50%. When SO4 was replaced with HEPES, pHL increased to 7.18 +/- 0.05, PCO2 was unchanged, [HCO3]L was 16.5 +/- 1.4 mM, and the rate of HCO3 accumulation doubled. Because measured [HCO3]L and that calculated from pHL and PCO2 were approximately the same, the net gain of HCO3 occurred in vivo, a result of either HCO3 backflux and/or intraluminal generation from CO2. By allowing the collected fluid PCO2 to fall to near zero prior to [HCO3]L measurement, we estimate that approximately 50% of the total gain of HCO3 with all solutions was due to backflux.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 283 (3) ◽  
pp. F525-F531 ◽  
Author(s):  
Raymond Quigley ◽  
Michel Baum

The early proximal tubule preferentially reabsorbs organic solutes and bicarbonate over chloride ions, resulting in a luminal fluid with a higher chloride concentration than that in blood. From this late proximal tubular fluid, one-half of NaCl reabsorption by the adult proximal tubule is active and transcellular and one-half is passive and paracellular. The purpose of the present in vitro microperfusion study was to determine the characteristics of passive chloride transport and permeability properties of the adult and neonatal proximal straight tubules (PST). In tubules perfused with a late proximal tubular fluid, net passive chloride flux was 131.7 ± 37.7 pmol · mm−1 · min−1in adult tubules and −17.1 ± 23.3 pmol · mm−1 · min−1 in neonatal proximal tubules ( P < 0.01). Chloride permeability was 10.94 ± 5.21 × 10−5 cm/s in adult proximal tubules and −1.26 ± 1.84 × 10−5 cm/s in neonatal proximal tubules ( P< 0.05). Thus neonatal PST have a chloride permeability not different from zero and have no net passive chloride transport. Bicarbonate permeability is also less in neonates than adults in this segment (−0.07 ± 0.03 × 10−5 vs. 0.93 ± 0.27 × 10−5 cm/s, P < 0.01). Neonatal PST have higher sodium-to chloride and bicarbonate-to-chloride permeability ratios than adult PST. However, mannitol and sucrose permeabilities were not different in adult proximal tubules and neonatal PST. Transepithelial resistance was measured using current injection and cable analysis. The resistance was 6.7 ± 0.7 Ω · cm2 in adult tubules and 11.3 ± 1.4 Ω · cm2 in neonatal PST ( P < 0.01). In conclusion, there are significant maturational changes in the characteristics of the PST paracellular pathway affecting transport in this nephron segment.


2003 ◽  
Vol 71 (11) ◽  
pp. 6648-6652 ◽  
Author(s):  
Steven Giles ◽  
Charles Czuprynski

ABSTRACT In this study we found that serum inhibitory activity against Blastomyces dermatitidis was principally mediated by albumin. This was confirmed in experiments using albumin from several mammalian species. Analbuminemic rat serum did not inhibit B. dermatitidis growth in vivo; however, the addition of albumin restored inhibitory activity. Inhibitory activity does not require albumin domain III and appears to involve binding of a low-molecular-weight yeast-derived growth factor.


1996 ◽  
Vol 271 (3) ◽  
pp. F717-F722
Author(s):  
G. Bajaj ◽  
M. Baum

Intracellular cystine loading by use of cystine dimethyl ester (CDME) results in a generalized inhibition in proximal tubule transport due, in part, to a decrease in intracellular ATP. The present study examined the importance of phosphate and metabolic substrates in the proximal tubule dysfunction produced by cystine loading. Proximal tubule intracellular phosphorus was 1.8 +/- 0.1 in control tubules and 1.1 +/- 0.1 nmol/mg protein in proximal tubules incubated in vitro with CDME P < 0.001). Infusion of sodium phosphate in rabbits and subsequent incubation of proximal tubules with a high-phosphate medium attenuated the decrease in proximal tubule respiration and prevented the decrease in intracellular ATP with cystine loading. Tricarboxylic acid cycle intermediates have been shown to preserve oxidative metabolism in phosphate-depleted proximal tubules. In proximal tubules incubated with either 1 mM valerate or butyrate, there was a 42 and 34% reduction (both P < 0.05) in the rate of oxygen consumption with cystine loading. However, tubules incubated with 1 mM succinate or citrate had only a 13 and 14% P = NS) reduction in the rate of oxygen consumption, respectively. These data are consistent with a limitation of intracellular phosphate in the pathogenesis of the proximal tubule dysfunction with cystine loading.


1993 ◽  
Vol 137 (1) ◽  
pp. 49-NP ◽  
Author(s):  
F. Facchinetti ◽  
A. R. Genazzani ◽  
M. Vallarino ◽  
M. Pestarino ◽  
A. Polzonetti-Magni ◽  
...  

ABSTRACT The presence and activity of brain, pituitary and testicular β-endorphin (β-EP)-like material have been studied in the frog, Rana esculenta, using reverse-phase high-pressure liquid chromatography, coupled with radioimmunoassay and immunocytochemistry. In-vivo and in-vitro treatments with naltrexone were carried out to assess the putative physiological activity of opioid peptides. β(1–31) and (1–27), together with their acetylated forms, have been identified in brain, pituitary and testis. In particular, β-EP(1–31) concentrations peaked during July in the brain and pituitary, whilst in testes maximum concentrations were found in April and November. β-EP immunoreactivity was present in the brain within the nucleus preopticus and nucleus infundibularis ventralis while positive fibres in the retrochiasmatic regions projected to the median eminence. In the testis, interstitial cells, canaliculi of the efferent system, spermatogonia and spermatocytes showed positive immunostaining for β-EP. In intact animals, naltrexone treatment increased plasma and testicular androgen levels and this effect was confirmed in in-vitro incubations of minced testes. Naltrexone also induced a significant increase in germ cell degeneration. Our results indicated that an opioid system modulates the hypothalamus-pituitary-gonadal axis in the frog, Rana esculenta and, for the first time, we have shown that the testicular activity of a non-mammalian species may be regulated by opiates locally. Journal of Endocrinology (1993) 137, 49–57


Sign in / Sign up

Export Citation Format

Share Document