cGMP mediates effects of atrial peptides on medullary collecting duct cells

1987 ◽  
Vol 252 (3) ◽  
pp. F551-F559 ◽  
Author(s):  
M. L. Zeidel ◽  
P. Silva ◽  
B. M. Brenner ◽  
J. L. Seifter

Atrial natriuretic peptides (ANP) stimulate renal Na+ excretion by poorly understood mechanisms, possibly involving direct inhibition of Na+ transport in the renal medulla. We have previously shown that human ANP 4-28 (hANP) inhibits Na+ entry-dependent O2 consumption (QO2) in rabbit inner medullary collecting duct (IMCD) cells. Because ANP actions in other tissues appear to be mediated by guanosine 3',5'-cyclic monophosphate (cGMP), the present studies examined the role of cyclic nucleotides in IMCD cell responses to ANP. 8-Bromo-cGMP (8-BrcGMP) diminished QO2 by 23.5 +/- 1.2% (SE) in IMCD cells but had no effect in cells derived from outer medullary collecting duct (OMCD); dibutyryl-adenosine 3',5'-cyclic monophosphate (cAMP) was without effect in IMCD cells. The inhibitory effect of BrcGMP was not additive with ANP, amiloride, or ouabain. Amphotericin, which enhances Na+ entry into cells, prevented the inhibitory effect of 8-BrcGMP. These results indicate that 8-BrcGMP, like ANP, inhibited Na+ entry in IMCD cells. hANP stimulated a 10-fold increase in cGMP in IMCD cells without altering IMCD cAMP levels or OMCD cGMP levels. Isobutyl methylxanthine, which inhibits phosphodiesterase activity, enhanced both cGMP accumulation and inhibition of QO2 by submaximal levels (10(-9) M) of ANP. Nitroprusside raised cGMP levels in both IMCD and OMCD cells but inhibited QO2 only in IMCD cells. We conclude that cGMP mediates the transport effects of ANP in IMCD cells. Our results indicate that cGMP may play an important role in the regulation of sodium transport in renal epithelia.

1992 ◽  
Vol 262 (6) ◽  
pp. F957-F964 ◽  
Author(s):  
M. Yamaki ◽  
S. McIntyre ◽  
M. E. Rassier ◽  
J. H. Schwartz ◽  
T. P. Dousa

We studied cyclic 3',5'-nucleotide phosphodiesterase (PDE) isozymes and their role in adenosine 3',5'-cyclic monophosphate (cAMP) and cGMP metabolism in a rat inner medullary collecting duct (IMCD) cell line. The homogenized and fractionated IMCD cells of cAMP-PDE and all of cGMP-PDE activity were found in the cytosol. The majority of cytosolic cAMP-PDE (greater than 50%) was isozyme PDE-IV; the Ca(2+)-calmodulin-sensitive PDE-I was present only in cytosol. Preincubation of IMCD cells with PDE-IV inhibitor rolipram markedly (5x) enhanced levels of cAMP both basal and in the presence of [Arg8]vasopressin (AVP). Cilostamide (for PDE-III) or vinpocetine had no effect, whereas PDE-I inhibitor 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MeoM-IBMX) enhanced AVP-dependent cAMP levels. Exposure of IMCD cells to 2 microM ionomycin decreased both basal and AVP-stimulated cAMP. Depletion of Ca2+ by preincubation of IMCD cells in the Ca(2+)-free medium with ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid markedly enhanced the stimulatory response of cAMP to AVP, and addition of 8-MeoM-IBMX further enhanced the AVP response. The levels of cGMP, basal or in response to atriopeptin (ANP), were not affected by PDE-V inhibitor zaprinast, but both inhibitors of PDE-I, 8-MeoM-IBMX and vinpocetine, increased basal cGMP, and 8-MeoM-IBMX also increased cGMP levels enhanced by ANP. The depletion of Ca2+ from IMCD cells alone had no effect on cGMP levels, but effects of 8-MeoM-IBMX and vinpocetine on the ANP-stimulated cGMP levels were enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (3) ◽  
pp. L407-L413 ◽  
Author(s):  
I. McGrogan ◽  
S. Lu ◽  
S. Hipworth ◽  
L. Sormaz ◽  
R. Eng ◽  
...  

The effects of exogeneous cyclopiazonic acid (CPA, 10 microM), a selective inhibitor of the sarcoplasmic reticulum (SR) Ca2+ adenosinetriphosphatase, on cyclic nucleotide-induced relaxations of canine airway smooth muscle were examined. Strips of tracheal muscle were precontracted with carbachol (50% median effective concentration, 0.1 microM) or with 60 mM KCl. The beta-agonist isoproterenol (ISO, 10 microM) relaxed the tissue by approximately 50%. The relaxation was reduced in the presence of CPA when L-type Ca2+ channels were available but not when these were blocked by 0.1 microM nifedipine. Forskolin (1.0 microM), an adenylate cyclase activator, was less effective at inhibiting the contraction than ISO, and addition of CPA did not block its inhibitory effect as effectively as when ISO was used. Radioimmunoassay indicated that both these agents raised adenosine 3',5'-cyclic monophosphate (cAMP) levels to the same degree. Very little relaxation of the precontracted smooth muscle was elicited by 3 mM 8-bromo-adenosine 3',5'-cyclic monophosphate (8-BrcAMP), and addition of CPA had no effect. Sodium nitroprusside (100 microM) and 8-bromo-guanosine 3',5'-cyclic monophosphate (10 mM) inhibited contraction to a greater degree than any agent that raised cAMP. These inhibitions were greatly reduced in the presence of CPA when L-type Ca2+ channels were available. We conclude that pumping of Ca2+ into SR plays a major role guanosine 3',5'-cyclic monophosphate-produced but not cAMP-induced relaxation; L-type Ca2+ channels must be available for the relaxant role of Ca2+ pumping into the SR to be expressed; and ISO-induced relaxation may not involve primarily elevation of the cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (6) ◽  
pp. F1117-F1124 ◽  
Author(s):  
R. C. Harris

Urine is an abundant source of epidermal growth factor (EGF) and prepro-EGF has been localized to the thick ascending limb and distal convoluted tubule of the kidney. However, the functional role of EGF in the kidney is poorly understood. Determination of EGF receptors and functional responses to EGF in intrarenal structures distal to the site of renal EGF production may prove critical to our understanding of the role of this peptide. These studies were designed to investigate the response to EGF of rat inner medullary collecting duct cells in culture and in freshly isolated suspensions. Primary cultures of inner medullary collecting duct cells demonstrated equilibrium binding of 125I-labeled EGF at 4 and 23 degrees C. At 23 degrees C, there was 89 +/- 1% specific binding (n = 30). Scatchard analysis of 125I-EGF binding suggested the presence of both high-affinity binding with a dissociation constant (Kd) of 5 X 10(-10) M and maximal binding sites (Ro) of 2.7 X 10(3) binding sites/cell and low-affinity binding, with Kd of 8.3 X 10(-9) M and Ro of 1.8 X 10(4) binding sites/cell. Bound EGF, 68 +/- 3%, was internalized by 45 min. EGF binding was not inhibited by antidiuretic hormone, atrial natriuretic peptide or bradykinin at 23 degrees C, but there was concentration-dependent inhibition of binding by transforming growth factor-alpha. Incubation with phorbol myristate acetate decreased 125I-EGF binding in a concentration-dependent manner. 125I-EGF binding was also demonstrated in freshly isolated suspensions of rat inner medullary collecting duct cells.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (1) ◽  
pp. F126-F129 ◽  
Author(s):  
D. E. Kohan ◽  
A. K. Hughes

Exogenous endothelin-1 (ET-1) inhibits arginine vasopressin (AVP)-induced adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in the inner medullary collecting duct (IMCD). Since ET-1 is produced by, and binds to specific receptors on, the IMCD, the possibility exists that ET-1 is an autocrine regulator of AVP action in this nephron segment. To test this hypothesis, rat IMCD cells grown on semipermeable membranes were exposed to rabbit anti-ET antisera or nonimmune rabbit sera (NRS). AVP (10(-9)M) caused a significantly greater accumulation of cAMP in confluent IMCD monolayers preincubated in ET-1 antisera compared with NRS. ET-1 (10(-8) M) inhibited the AVP-induced rise in cAMP by 65% in cells preincubated in ET-1 antisera, but had no effect in NRS-treated cells. Finally, 125I-ET-1 (30 pM) binding was increased sixfold in IMCD preincubated in anti-ET-1 antisera. These data indicate that ET causes tonic autocrine inhibition of AVP responsiveness in the IMCD.


1991 ◽  
Vol 261 (6) ◽  
pp. F1013-F1016 ◽  
Author(s):  
M. L. Zeidel ◽  
H. R. Brady ◽  
D. E. Kohan

Interleukin-1 (IL-1), a cytokine produced by macrophages, causes an increase in Na+ excretion in experimental animals. Micropuncture studies have determined that the natriuretic effect of IL-1 is largely due to inhibition of Na+ reabsorption in the collecting duct. The current studies made use of suspensions of rabbit inner medullary collecting duct (IMCD) cells to examine the mechanism by which IL-1 regulates Na+ transport. IL-1 reduced ouabain-sensitive 86Rb+ uptake by 48% at 10 s, 36% at 30 s, and 29% at 60 s, suggesting an inhibitory effect on Na(+)-K(+)-adenosinetriphosphatase (ATPase) activity. IL-1 inhibition of 86Rb+ uptake occurred in a dose-dependent manner. This effect appears to be mediated by prostaglandin E2 (PGE2) because 1) ibuprofen blocks the inhibitory effect of IL-1 on IMCD Na(+)-K(+)-ATPase activity, 2) IL-1 and PGE2 cause equivalent and nonadditive inhibition of 86Rb+ uptake, 3) IL-1 causes a two- to threefold increase in PGE2 content in IMCD cells, and 4) dose-response curves were similar for IL-1 stimulation of PGE2 content and inhibition of 86Rb+ uptake in IMCD cells. Thus the natriuretic effect of IL-1 is due, at least in part, to stimulation of PGE2 production by collecting duct cells with resultant inhibition of Na(+)-K(+)-ATPase activity.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Fei Wang ◽  
Renfei Luo ◽  
KEXIN PENG ◽  
Peng Wu ◽  
Xiyang Liu ◽  
...  

We have previously shown that activation of (pro)renin receptor (PRR) induces epithelial Na + channel (ENaC) activity in cultured collecting duct cells. Here, we examined the role of soluble PRR (sPRR), generated by site-1 protease (S1P), a newly identified PRR cleavage protease, in ENaC regulation, and further tested its relevance to Aldo signaling. In cultured mpkCCD cells, administration of recombinant histidine-tagged sPRR (sPRR-His) at 10 nM for 24 h induced a significant increase in the amiloride-sensitive short-circuit current as assessed using the Ussing chamber technique ( I eq : 7.5 ± 0.7 μA/cm 2 in sPRR group vs. 3.5 ± 0.5 μA/cm 2 in vehicle group, n = 6, p < 0.01) . In primary cultured rat IMCD cells, the same sPRR-His treatment induced a 1.7 fold increase in protein expression of the α-subunit but not β- or γ-subunit of ENaC, in parallel with upregulation of mRNA expression as well as promoter activity of the α-subunit. The upregulation of α-ENaC transcription depended on β-catenin signaling. Consistent results obtained by epithelial volt ohmmeter measurement of equivalent current and Using chamber determination of short-circuit current showed that Aldo-induced ENaC activity was almost completely abolished by PF-429242 (PF), a S1P inhibitor, and the response was restored by supplement of sPRR-His ( I eq : 7.2 ± 0.7 μA/cm 2 in Aldo group vs. 5.0 ± 0.3 μA/cm 2 in Aldo/PF group vs. 6.8 ± 0.3 μA/cm 2 in Aldo/PF/sPRR-His group, n = 5, p < 0.05). Medium sPRR was elevated by Aldo and inhibited by PF. Male C57BL/6 mice were pretreated with PF (30 mg/kg/day) or vehicle via minipump, followed by 3 days of aldosterone (0.2 mg/kg/day via a second minipump). Amiloride-sensitive Na+ current in freshly isolated CCD as measured by using patch clamp lower in Aldo + PF group than in Aldo group. Together, these results support an essential role of S1P-derived sPRR in mediating Aldo-induced ENaC activation.


1995 ◽  
Vol 430 (5) ◽  
pp. 697-704 ◽  
Author(s):  
Yutaka Kuroda ◽  
Katsuji Takeda ◽  
Kaoru Tabei ◽  
Masatoshi Kuroki ◽  
Toshio Yagimuma ◽  
...  

1999 ◽  
Vol 277 (1) ◽  
pp. F10-F16 ◽  
Author(s):  
Tianxin Yang ◽  
Daqing Sun ◽  
Yuning G. Huang ◽  
Ann Smart ◽  
Josephine P. Briggs ◽  
...  

Induction of the inducible cyclooxygenase isoform COX-2 is likely to be an important mechanism for increased prostaglandin production in renal inflammation. We examined the effect of lipopolysaccharide (LPS) on regional renal COX-2 expression in the rat. In the inner medulla, LPS injection (4 mg/kg ip) induced a twofold and 2.5-fold increase in the levels of COX-2 mRNA and COX-2 protein, respectively. In contrast, COX-2 expression in the renal cortex was not significantly altered. COX-2 promoter transgenic mice were created using the 2.7-kb flanking region of the rat COX-2 gene. In these animals, LPS injection induced reporter gene expression predominately in the inner medulla. The LPS receptor CD14, usually regarded as a monocyte/macrophage-specific marker, was found to be abundantly expressed in the inner medulla and in dissected inner medullary collecting duct (IMCD) cells, suggesting that it may mediate medullary COX-2 induction. CD14 was present only at low levels in cortex and cortical segments, including glomeruli. In cultured cells, it was abundant in mouse IMCD (mIMCD-K2) cells and renal medullary interstitial cells, but largely undetectable in mesangial cells and M1 cells, a cell line derived from mouse cortical collecting ducts. In the mIMCD-K2 cell line, LPS significantly induced COX-2 mRNA expression, with concomitant induction of CD14. LPS-stimulated COX-2 expression was reduced by the addition of an anti-CD14 monoclonal antibody to the culture medium. These results demonstrate that LPS selectively stimulates COX-2 expression in the renal inner medulla through a CD14-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document