Abstract 261: Endothelial Cells Contribute to RAS Activation in Microvascular Smooth Muscle Cells

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kayoko Miyata ◽  
Ryousuke Satou ◽  
L Gabriel Navar

Introduction: We have demonstrated that Ang II augments angiotensinogen (AGT) expression in rat preglomerular vascular smooth muscle cells (VSMCs). However, it is unclear if endothelial cells (ECs) are involved in augmentation of AGT in renal afferent arterioles. Hypothesis: We assessed the hypothesis that the ECs respond to paracrine signals that Ang II contribute to AGT augmentation in VSMCs. Objective: We established primary cultures of preglomerular ECs and examined the effects of Ang II and/or culture medium from ECs on AGT expression in preglomerular VSMCs. Methods and Results: We established primary cultures of preglomerular ECs, isolated from afferent arterioles of Sprague-Dawley rats. The cells were identified as ECs by being positive for a marker, CD34 and endothelial NOS and negative for alpha-SMA (a marker for VSMCs) and P4H-b (a marker for Fibroblasts) by immnostaining. The expression levels of AGT mRNA and renin mRNA in preglomerular ECs were examined by real-time RT-PCR. Ang II (100 pmol/L) increased AGT mRNA levels (1.34 +/- 0.16, by 100 pmol/L, N=4) and Renin mRNA levels (6.16 +/- 0.96, by 100 nmol/L, N=4) in ECs. On the other hand, the same dose of Ang II suppressed Renin mRNA expression in isolated Juxtaglomerular cells (JGs). These results indicate that preglomerular ECs are respond to Ang II and exclude the possible contamination of JGs into ECs. 100 pmol/L of Ang II increased AGT mRNA expression levels (1.37 +/- 0.03, relative ratio, N=4) in preglomerular VSMCs and the culture medium of ECs without Ang II treatment also more increased AGT mRNA expression (1.62 +/- 0.13, relative ratio, N=4) in preglomerular VSMCs. The AGT mRNA expression augmentation was enhanced when preglomerular VSMCs were treated with culture medium of Ang II-treated preglomerular ECs (2.39 +/- 0.41, relative ratio, N=4). The synergistic effects of Ang II and preglomerular ECs were also observed in PAI-1 expression in preglomerular VSMCs. Conclusion: These data demonstrate that preglomerular ECs contribute to Ang II-upregulation of AGT in renal afferent arterioles leading to further Ang II augmentation, which leads to increases in inflammatory and sclerotic factors in preglomerular VSMCs.

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Francisco J Rios ◽  
Augusto C Montezano ◽  
Lucas Van Der Mey ◽  
Heather Y Small ◽  
Carmine Savoia ◽  
...  

VEGF/VEGFR inhibitors, used as anti-angiogenic drugs to treat cancer, induce severe hypertension. Molecular mechanisms whereby VEGF inhibitors cause hypertension are unclear, but nitric oxide (NO) and oxidative stress may be involved. We questioned whether reactive oxygen species (ROS) and Ang II, important regulators of vascular function in hypertension, also play a role in VEGF inhibitor-induced vascular dysfunction. Human microvascular endothelial cells (HMECs) were stimulated with vatalanib (VAT-VEGFR inhibitor) and gefitinib (GEF-EGFR inhibitor) in the absence/presence of Ang II. Activation of eNOS and MAPKs were assessed by immunoblotting. Antioxidant enzyme mRNA was analysed by qPCR. Microparticle levels were measured by flow cytometry. Endothelial microparticles, biomarkers of endothelial damage, tend to increase in subjects treated with VEGFR inhibitors. Phosphorylation of eNOS activation site (Ser1177) (28.3% ± 7.1) was decreased by VAT, while no changes were observed after exposure of HMECs to GEF (p<0.05). VAT decreased mRNA expression of Nox4 (0.5 ± 0.2) and H2O2-regulating antioxidants enzymes such as catalase (0.4 ± 0.1) and glutathione peroxidase (0.4 ± 0.1), while increased mRNA levels of Nox5 (3.35±1.1) (p<0.05 vs. veh). Ang II stimulation increased eNOS (171.2% ± 17.4) and ERK1/2 (177.5% ± 38.5) activation (p<0.05); all effects were blocked only by GEF. Inhibition of VEGFR also blocked Ang II effects on SOD1 (1.33 ± 0.1), HO-1 (1.6 ± 0.3) and NQO1 (1.6 ± 0.3) mRNA levels (p<0.05). In addition, Ang II increased Nox4 mRNA expression through VEGFR-dependent mechanisms. VEGFR1/2 and AT2R, but not AT1R, were expressed in HMEC. Ang II effects on eNOS phosphorylation were inhibited by PD123319 (AT2R antagonist) but not by losartan (AT1R antagonist). In conclusion, our data identify novel mechanisms whereby AngII, possibly through AT2R-dependent VEGFR transactivation, regulates eNOS activation, MAPK signalling and H2O2-related antioxidant enzymes. In addition to changes in NO availability, VEGFR inhibition may interfere with the redox status of endothelial cells, leading to vascular dysfunction and hypertension.


2014 ◽  
Vol 306 (6) ◽  
pp. F608-F618 ◽  
Author(s):  
Kayoko Miyata ◽  
Ryousuke Satou ◽  
Weijian Shao ◽  
Minolfa C. Prieto ◽  
Maki Urushihara ◽  
...  

In angiotensin II (ANG II)-dependent hypertension, the augmented intrarenal ANG II constricts the renal microvasculature and stimulates Rho kinase (ROCK), which modulates vascular contractile responses. Rho may also stimulate angiotensinogen (AGT) expression in preglomerular vascular smooth muscle cells (VSMCs), but this has not been established. Therefore, the aims of this study were to determine the direct interactions between Rho and ANG II in regulating AGT and other renin-angiotensin system (RAS) components and to elucidate the roles of the ROCK/NF-κB axis in the ANG II-induced AGT augmentation in primary cultures of preglomerular VSMCs. We first demonstrated that these preglomerular VSMCs express renin, AGT, angiotensin-converting enzyme, and ANG II type 1 (AT1) receptors. Furthermore, incubation with ANG II (100 pmol/l for 24 h) increased AGT mRNA (1.42 ± 0.03, ratio to control) and protein (1.68 ± 0.05, ratio to control) expression levels, intracellular ANG II levels, and NF-κB activity. In contrast, the ANG II treatment did not alter AT1a and AT1b mRNA levels in the cells. Treatment with H-1152 (ROCK inhibitor, 10 nmol/l) and ROCK1 small interfering (si) RNA suppressed the ANG II-induced AGT augmentation and the upregulation and translocalization of p65 into nuclei. Functional studies showed that ROCK exerted a greater influence on afferent arteriole responses to ANG II in rats subjected to chronic ANG II infusions. These results indicate that ROCK is involved in NF-κB activation and the ROCK/NF-κB axis contributes to ANG II-induced AGT upregulation, leading to intracellular ANG II augmentation.


2008 ◽  
Vol 86 (6) ◽  
pp. 299-309 ◽  
Author(s):  
W. Goettsch ◽  
A. Schubert ◽  
H. Morawietz

A key step in endothelin-1 (ET-1) synthesis is the proteolytic cleavage of big ET-1 by the endothelin-converting enzyme-1 (ECE-1). Four alternatively spliced isoforms, ECE-1a to ECE-1d, have been discovered; however, regulation of the expression of specific ECE-1 isoforms is not well understood. Therefore, we stimulated primary human umbilical vein endothelial cells (HUVECs) with angiotensin II (Ang II). Furthermore, expression of ECE-1 isoforms was determined in internal mammary arteries of patients undergoing coronary artery bypass grafting surgery. Patients had received one of 4 therapies: angiotensin-converting enzyme inhibitors (ACE-I), Ang II type 1 receptor blockers (ARB), HMG-CoA reductase inhibitors (statins), and a control group that had received neither ACE-I, ARB (that is, treatment not interfering in the renin–angiotensin system), nor statins. Under control conditions, ECE-1a is the dominant isoform in HUVECs (4.5 ± 2.8 amol/μg RNA), followed by ECE-1c (2.7 ± 1.0 amol/μg), ECE-1d (0.49 ± 0.17 amol/μg), and ECE-1b (0.17 ± 0.04 amol/μg). Stimulation with Ang II did not change the ECE-1 expression pattern or the ET-1 release. We found that ECE-1 mRNA expression was higher in patients treated with statins than in patients treated with ARB therapy (5.8 ± 0.76 RU versus 3.0 ± 0.4 RU), mainly attributed to ECE-1a. In addition, ECE-1a mRNA expression was higher in patients receiving ACE-I therapy than in patients receiving ARB therapy (1.68 ± 0.27 RU versus 0.83 ± 0.07 RU). We conclude that ECE-1a is the major ECE-1 isoform in primary human endothelial cells. Its expression in internal mammary arteries can be regulated by statin therapy and differs between patients with ACE-I and ARB therapy.


2018 ◽  
Vol 19 (9) ◽  
pp. 2621
Author(s):  
Maxime Pellegrin ◽  
Karima Bouzourène ◽  
Jean-François Aubert ◽  
Aimable Nahimana ◽  
Michel Duchosal ◽  
...  

Angiotensin (Ang) II triggers vulnerable atherosclerotic plaque development. Bone marrow (BM)-derived cells are key players in atherogenesis but whether Ang II induces plaque vulnerability directly through Ang II type 1 receptor (AT1R) activation on these cells remains to be clarified. In the present study, we investigated whether a lack of AT1R on BM-derived cells might affect Ang II-mediated vulnerable plaque development. The 2-kidney, 1-clip (2K1C) model (Ang II-dependent mouse model of advanced atherosclerosis and vulnerable plaques) was generated in ApoE−/− mice transplanted with AT1aR−/− or AT1aR+/+ BM. Plasma cholesterol as well as hepatic mRNA expression levels of genes involved in cholesterol metabolism were significantly lower in 2K1C mice transplanted with AT1aR−/− BM than in controls. Atherosclerotic lesions were significantly smaller in AT1aR−/− BM 2K1C mice (−79% in the aortic sinus and −71% in whole aorta compared to controls). Plaques from AT1aR−/− BM 2K1C mice exhibited reduced lipid core/fibrous cap and macrophage/smooth muscle cells ratios (−82% and −88%, respectively), and increased collagen content (+70%), indicating a more stable phenotype. Moreover, aortic mRNA levels of pro-inflammatory cytokines IL-12p35, IL-1β, and TNF-α were significantly reduced in AT1aR−/− BM 2K1C mice. No significant differences in either the number of circulating Ly6Chigh inflammatory monocytes and Ly6Clow resident anti-inflammatory monocyte subsets, or in mRNA levels of aortic M1 or M2 macrophage markers were observed between the two groups. No significant differences were observed in splenic mRNA levels of T cell subsets (Th1, Th2, Th17 and Treg) markers between the two groups. In conclusion, direct AT1R activation by Ang II on BM-derived cells promotes hepatic mRNA expression of cholesterol-metabolism-related genes and vascular mRNA expression of pro-inflammatory cytokines that may lead to plaque instability.


1998 ◽  
Vol 79 (01) ◽  
pp. 217-221 ◽  
Author(s):  
Koichi Kokame ◽  
Toshiyuki Miyata ◽  
Naoaki Sato ◽  
Hisao Kato

SummaryThrombotic complications are frequently associated with atherosclerosis. Lysophosphatidylcholine (LPC), a component accumulated in oxidatively modified LDL (ox-LDL), is known to play a crucial role in the initiation and progression of atherosclerotic vascular lesions. Since a vascular anticoagulant, tissue factor pathway inhibitor (TFPI), has the function of regulating the initial reaction of tissue factor (TF)-induced coagulation, we investigated the effect of LPC on TFPI synthesis in cultured human umbilical vein endothelial cells (HUVEC). The treatment of HUVEC with LPC for 24 h decreased TFPI antigen levels in both the culture medium and the cell lysate in a dose-dependent manner. Northern blot analysis revealed that LPC caused a time-dependent decrease in the TFPI mRNA levels. The levels of TFPI antigen and mRNA were decreased to 72% and 38%, respectively, by the incubation with 50 μM LPC for 24 h. The down-regulation by LPC of TFPI mRNA expression was not observed in the presence of cycloheximide, suggesting that protein synthesis was involved in the suppression of TFPI mRNA expression. The TFPI mRNA levels in actinomycin D-treated cells were relatively stable, indicating that the down-regulation of TFPI mRNA by LPC would be partly explained by the enhanced mRNA destabilization. In contrast to the significant down-regulatory effects of LPC on TFPI expression, LPC did not induce TF mRNA expression in HUVEC. These results indicate that LPC accumulated in the atherosclerotic vascular wall would suppress endothelial TFPI synthesis, reducing the antithrombotic property of endothelial cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Franca Marino ◽  
Luigina Guasti ◽  
Matteo Tozzi ◽  
Laura Schembri ◽  
Luana Castiglioni ◽  
...  

Atherosclerosis is an inflammatory disease characterized by immunological activity, in which endothelial dysfunction represents an early event leading to subsequent inflammatory vascular damage. We investigated gene expression of the adhesion molecules (AMs) ICAM-1, VCAM-1, andβ1-integrin in endothelial cells (ECs) isolated from venous blood (circulating EC, cEC) and purified from femoral plaques (pEC) obtained from 9 patients with peripheral artery disease (PAD) submitted to femoral artery thrombendarterectomy (FEA). In addition, in peripheral blood mononuclear cells (PBMCs) of the same subjects, we investigated gene expression of IFN-γ, IL-4, TGF-β, and IL-10. Patients were longitudinally evaluated 1 month before surgery, when statin treatment was established, at the time of surgery, and after 2 and 5 months. All AM mRNA levels, measured by means of real-time PCR, in cEC diminished during the study, up to 41–50% of initial levels at followup. AM mRNA expression was significantly higher in pEC than in cEC. During the study, in PBMCs, TGF-βand IL-10 mRNA levels remained unchanged while IFN-γand IL-4 levels increased; however, the ratio IFN-γ/IL-4 showed no significant modification. In PAD patients, FEA and statin treatment induce a profound reduction of AM expression in cEC and affect cytokine mRNA expression in PBMCs.


2017 ◽  
Vol 44 (8) ◽  
pp. 1198-1205 ◽  
Author(s):  
Takashi Taniguchi ◽  
Yoshihide Asano ◽  
Kouki Nakamura ◽  
Takashi Yamashita ◽  
Ryosuke Saigusa ◽  
...  

Objective.CXCL6, a chemokine with proangiogenic property, is reported to be involved in vasculopathy associated with systemic sclerosis (SSc). We investigated the contribution of CXCL6 to SSc development by focusing on the association of friend leukemia virus integration 1 (Fli1) deficiency, a potential predisposing factor of SSc, with CXCL6 expression and clinical correlation of serum CXCL6 levels.Methods.mRNA levels of target genes and the binding of Fli1 to the CXCL6 promoter were evaluated by quantitative reverse transcription-PCR and chromatin immunoprecipitation, respectively. Serum CXCL6 levels were determined by ELISA.Results.FLI1 siRNA significantly enhanced CXCL6 mRNA expression in human dermal fibroblasts and human dermal microvascular endothelial cells, while Fli1 haploinsufficiency significantly suppressed CXCL6 mRNA expression in murine peritoneal macrophages stimulated with lipopolysaccharide. Supporting a critical role of Fli1 deficiency to induce SSc-like phenotypes, CXCL6 mRNA expression was higher in SSc dermal fibroblasts than in normal dermal fibroblasts. Importantly, Fli1 bound to the CXCL6 promoter in dermal fibroblasts, endothelial cells, and THP-1 cells. In patients with SSc, serum CXCL6 levels correlated positively with the severity of dermal and pulmonary fibrosis and were elevated in association with cardiac and pulmonary vascular involvement and cutaneous vascular symptoms, including Raynaud phenomenon, digital ulcers (DU)/pitting scars, and telangiectasia. Especially, serum CXCL6 levels were associated with DU/pitting scars and heart involvement by multiple regression analysis.Conclusion.CXCL6 expression is upregulated by Fli1 deficiency in fibroblasts and endothelial cells, potentially contributing to the development of fibrosis and vasculopathy in the skin, lung, and heart of SSc.


2010 ◽  
Vol 104 (09) ◽  
pp. 582-591 ◽  
Author(s):  
Trine Lund ◽  
Stig Hermansen ◽  
Thomas Andreasen ◽  
Jan Olsen ◽  
Bjarne Østerud ◽  
...  

SummaryShear stress has an established effect on mature endothelial cells, but less is known about how shear stress regulates endothelial progenitor cells (EPCs). In vitro expanded EPCs isolated from adult human blood represent a novel tool in regenerative vessel therapy. However, in vitro culturing may generate cells with unfavourable properties. The aim of the present study was therefore to assess whether shear stress may influence the inflammatory and thrombotic phenotype of in vitro expanded EPCs. In late outgrowth EPCs, 6 hours of shear stress (6.0 dynes/ cm2) significantly reduced the mRNA levels of IL-8, COX2, and tissue factor (TF) compared to static controls. This was associated with a reduced TF activity. In contrast, mRNA expression of NOS3 was significantly increased following 6 and 24 hours of shear stress. In accordance with this, NOS3 protein expression was increased following 24 hours of shear stress. Overall stimulation with the proinflammatory mediator, TNFα, for the final 2 hours increased the mRNA expression of IL-6, IL-8, MCP-1, ICAM1, and TF. However exposure to 6 hours of shear stress significantly suppressed the inductory potential of TNFα to increase the mRNA levels of IL-6, IL-8, COX2, and TF. Additionally, TNFα increased TF activity approximately 10 times, an effect that was also significantly reduced by exposure to 6 and 24 hours of shear stress. The effect of shear on the gene levels of TF and NOS3 were not blocked by the NOS inhibitor L-NAME. These observations suggest that EPCs are capable of functionally responding to shear stress.


1997 ◽  
Vol 272 (4) ◽  
pp. R1105-R1111 ◽  
Author(s):  
T. Ritthaler ◽  
K. Schricker ◽  
F. Kees ◽  
B. Kramer ◽  
A. Kurtz

This study aimed at examining the influence of acute hypoxia on renin secretion and renin gene expression in the kidney. To this end, male Sprague-Dawley rats were exposed to severe hypoxic stress (8% O2) or to carbon monoxide (0.1% CO) for 6 h, and plasma renin activity (PRA) and renal renin mRNA levels were determined. PRA values increased from 3 to 13 and 10 ng angiotensin I x h(-1) x ml(-1), and renin mRNA levels increased by 120 and 100% during hypoxia and CO, respectively. Lowering the PO2 from 150 to 20 or 7 mmHg in the gas atmosphere of primary cultures of renal juxtaglomerular cells had no influence on renin secretion and renin gene expression after 6 and 20 h. Our findings thus suggest that both arterial and venous hypoxia can be powerful stimulators of renin secretion and renin gene expression in vivo. Because renal denervation did not prevent stimulation of the renin system by hypoxia, the effect could be indirectly mediated via the baroreceptor-macula densa mechanism. Another potential mediator of the effect could be circulating catecholamines, since we found that plasma norepinephrine increased from 0.7 to 1.5 and 2.4 ng/ml and plasma epinephrine increased from 0.3 to 1.4 and 2.7 ng/ml during hypoxia and CO inhalation, respectively.


2004 ◽  
Vol 286 (2) ◽  
pp. F349-F355 ◽  
Author(s):  
Jürgen Klar ◽  
Helga Vitzthum ◽  
Armin Kurtz

The secretion and synthesis of renin as the key regulator of the renin-angiotensin-aldosterone system are directly controlled by ANG II in the sense of a negative feedback. Because we found that renal afferent arterioles including the juxtaglomerular portion express the mineralocorticoid receptor, we aimed to characterize a possible direct effect of aldosterone on renin synthesis and renin secretion at the level of renal juxtaglomerular cells. Aldosterone (100 nM) clearly enhanced renin mRNA levels in primary cultures of mouse juxtaglomerular cells prestimulated with isoproterenol (100 nM) but had no effect on the exocytosis of stored renin. Similarly, in the mouse juxtaglomerular cell line As4.1, aldosterone time and concentration dependently increased renin mRNA abundance and prorenin secretion up to 2.5-fold. Moreover, aldosterone potentiated cAMP-induced renin gene expression in As4.1 cells. The effect of aldosterone was inhibited by spironolactone and was mimicked by corticosteroid hormones but not by sex steroids. Aldosterone had no influence on basal renin promoter activity but increased the renin mRNA half-life about threefold. In summary, these data suggest that aldosterone exerts a direct positive effect on renin gene expression at the cellular level probably by stabilizing renin mRNA.


Sign in / Sign up

Export Citation Format

Share Document