scholarly journals Urea activates ribosomal S6 kinase (RSK) in a MEK-dependent fashion in renal mIMCD3 cells

1998 ◽  
Vol 274 (1) ◽  
pp. F73-F78 ◽  
Author(s):  
Zheng Zhang ◽  
David M. Cohen

Urea activates a characteristic subset of signaling pathways in a tissue-specific fashion, including transcription of immediate early genes through activation of the mitogen-activated protein kinase (MAPK), ERK (extracellular signal-regulated kinase), and activation of its transcription factor substrate, Elk-1. The ability of urea to activate the ERK effector and pivotal regulatory kinase, ribosomal S6 kinase (RSK), was investigated in mIMCD3 renal inner medullary collecting duct cells. Urea upregulated RSK activity in a time-dependent fashion in serum-deprived mIMCD3 cells; the effect was maximal at 5 min. Activation by hypertonic NaCl, in contrast, was negligible at 5 min and peaked at 15 min. Both stimuli induced the nuclear translocation of cytosolic RSK, as determined via immunofluorescence. Importantly, activation of RSK by both solutes was MAPK/ERK kinase (MEK) dependent, as determined by the ability of the specific MEK inhibitor, PD-98059, to abrogate the response. Taken together, these data indicate that urea activates the ERK effector, RSK, in cells of the renal medulla in an ERK-dependent fashion, further emphasizing the functional significance of urea signaling through ERK activation in renal medullary cells.

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1567
Author(s):  
Po-Chien Chou ◽  
Swati Rajput ◽  
Xiaoyun Zhao ◽  
Chadni Patel ◽  
Danielle Albaciete ◽  
...  

Cells adjust to nutrient fluctuations to restore metabolic homeostasis. The mechanistic target of rapamycin (mTOR) complex 2 responds to nutrient levels and growth signals to phosphorylate protein kinases belonging to the AGC (Protein Kinases A,G,C) family such as Akt and PKC. Phosphorylation of these AGC kinases at their conserved hydrophobic motif (HM) site by mTORC2 enhances their activation and mediates the functions of mTORC2 in cell growth and metabolism. Another AGC kinase family member that is known to undergo increased phosphorylation at the homologous HM site (Ser380) is the p90 ribosomal S6 kinase (RSK). Phosphorylation at Ser380 is facilitated by the activation of the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) in response to growth factor stimulation. Here, we demonstrate that optimal phosphorylation of RSK at this site requires an intact mTORC2. We also found that RSK is robustly phosphorylated at Ser380 upon nutrient withdrawal or inhibition of glycolysis, conditions that increase mTORC2 activation. However, pharmacological inhibition of mTOR did not abolish RSK phosphorylation at Ser380, indicating that mTOR catalytic activity is not required for this phosphorylation. Since RSK and SIN1β colocalize at the membrane during serum restimulation and acute glutamine withdrawal, mTORC2 could act as a scaffold to enhance RSK HM site phosphorylation. Among the known RSK substrates, the CCTβ subunit of the chaperonin containing TCP-1 (CCT) complex had defective phosphorylation in the absence of mTORC2. Our findings indicate that the mTORC2-mediated phosphorylation of the RSK HM site could confer RSK substrate specificity and reveal that RSK responds to nutrient fluctuations.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2407-2412 ◽  
Author(s):  
Pamela J. Mansfield ◽  
James A. Shayman ◽  
Laurence A. Boxer

Abstract Polymorphonuclear leukocyte (PMNL) phagocytosis mediated by FcγRII proceeds in concert with activation of the mitogen-activated protein (MAP) kinase, extracellular signal-regulated kinase ERK2. We hypothesized that myosin light chain kinase (MLCK) could be phosphorylated and activated by ERK, thereby linking the MAP kinase pathway to the activation of cytoskeletal components required for pseudopod formation. To explore this potential linkage, PMNLs were challenged with antibody-coated erythrocytes (EIgG). Peak MLCK activity, 3-fold increased over controls, occurred at 4 to 6 minutes, corresponding with the peak rate of target ingestion and ERK2 activity. The MLCK inhibitor ML-7 (10 μmol/L) inhibited both phagocytosis and MLCK activity to basal values, thereby providing further support for the linkage between the functional response and the requirement for MLCK activation. The MAPK kinase (MEK) inhibitor PD098059 inhibited phagocytosis, MLCK activity, and ERK2 activity by 80% to 90%. To directly link ERK activation to MLCK activation, ERK2 was immunoprecipitated from PMNLs after EIgG ingestion. The isolated ERK2 was incubated with PMNL cytosol as a source of unactivated MLCK and with MLCK substrate; under these conditions ERK2 activated MLCK, resulting in phosphorylation of the MLCK substrate or of the myosin light chain itself. Because MLCK activates myosin, we evaluated the effect of directly inhibiting myosin adenosine triphosphatase using 2,3-butanedione monoxime (BDM) and found that phagocytosis was inhibited by more than 90% but MLCK activity remained unaffected. These results are consistent with the interpretation that MEK activates ERK, ERK2 then activates MLCK, and MLCK activates myosin. MLCK activation is a critical step in the cytoskeletal changes resulting in pseudopod formation.


2001 ◽  
Vol 21 (21) ◽  
pp. 7470-7480 ◽  
Author(s):  
Stephanie A. Richards ◽  
Valley C. Dreisbach ◽  
Leon O. Murphy ◽  
John Blenis

ABSTRACT RSK is a serine/threonine kinase containing two distinct catalytic domains. Found at the terminus of the Ras/extracellular signal-regulated kinase (ERK)–mitogen-activated protein kinase (MAPK) kinase cascade, mitogen-stimulated ribosomal S6 kinase (RSK) activity requires multiple inputs. These inputs include phosphorylation of the C-terminal kinase domain activation loop by ERK1/2 and phosphorylation of the N-terminal kinase domain activation loop by phosphoinositide-dependent protein kinase-1 (PDK1). Previous work has shown that upon mitogen stimulation, RSK accumulates in the nucleus. Here we show that prior to nuclear translocation, epidermal growth factor-stimulated RSK1 transiently associates with the plasma membrane. Myristylation of wild-type RSK1 results in an activated enzyme in the absence of added growth factors. When RSK is truncated at the C terminus, the characterized ERK docking is removed and RSK phosphotransferase activity is completely abolished. When myristylated, however, this myristylated C-terminal truncated form (myrCTT) is activated at a level equivalent to myristylated wild-type (myrWT) RSK. Both myrWT RSK and myrCTT RSK can signal to the RSK substrate c-Fos in the absence of mitogen activation. Unlike myrWT RSK, myrCTT RSK is not further activated by serum. Only the myristylated RSK proteins are basally phosphorylated on avian RSK1 serine 381, a site critical for RSK activity. The myristylated and unmyristylated RSK constructs interact with PDK1 upon mitogen stimulation, and this interaction is insensitive to the MEK inhibitor UO126. Because a kinase-inactive CTT RSK can be constitutively activated by targeting to the membrane, we propose that ERK may have a dual role in early RSK activation events: preliminary phosphorylation of RSK and escorting RSK to a membrane-associated complex, where additional MEK/ERK-independent activating inputs are encountered.


2006 ◽  
Vol 291 (6) ◽  
pp. C1336-C1345 ◽  
Author(s):  
Shanqin Xu ◽  
Hossein Bayat ◽  
Xiuyun Hou ◽  
Bingbing Jiang

Activation of NF-κB requires the phosphorylation and degradation of its associated inhibitory proteins, IκB. Previously, we reported that the extracellular signal-regulated kinase (ERK) is required for IL-1β to induce persistent activation of NF-κB in cultured rat vascular smooth muscle cells (VSMCs). The present study examined the mechanism by which the ERK signaling cascade modulates the duration of NF-κB activation. In cultured rat VSMCs, IL-1β activated ERK and induced degradation of both IκBα and IκBβ, which was associated with nuclear translocation of both ribosomal S6 kinase (RSK)1 and NF-κB p65. RSK1, a downstream kinase of ERK, was associated with an IκBβ/NF-κB complex, which was independent of the phosphorylation status of RSK1. Treatment of VSMCs with IL-1β decreased IκBβ in the RSK1/IκBβ/NF-κB complex, an effect that was attenuated by inhibition of ERK activation. Knockdown of RSK1 by small interference RNA attenuated the IL-1β-induced IκBβ decrease without influencing ether ERK phosphorylation or the earlier IκBα degradation. By using recombinant wild-type and mutant IκBβ proteins, both active ERK2 and RSK1 were found to directly phosphorylate IκBβ, but only active RSK1 phosphorylated IκBβ on Ser19 and Ser23, two sites known to mediate the subsequent ubiquitination and degradation. In conclusion, in the ERK signaling cascade, RSK1 is a key component that directly phosphorylates IκBβ and contributes to the persistent activation of NF-κB by IL-1β.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2407-2412 ◽  
Author(s):  
Pamela J. Mansfield ◽  
James A. Shayman ◽  
Laurence A. Boxer

Polymorphonuclear leukocyte (PMNL) phagocytosis mediated by FcγRII proceeds in concert with activation of the mitogen-activated protein (MAP) kinase, extracellular signal-regulated kinase ERK2. We hypothesized that myosin light chain kinase (MLCK) could be phosphorylated and activated by ERK, thereby linking the MAP kinase pathway to the activation of cytoskeletal components required for pseudopod formation. To explore this potential linkage, PMNLs were challenged with antibody-coated erythrocytes (EIgG). Peak MLCK activity, 3-fold increased over controls, occurred at 4 to 6 minutes, corresponding with the peak rate of target ingestion and ERK2 activity. The MLCK inhibitor ML-7 (10 μmol/L) inhibited both phagocytosis and MLCK activity to basal values, thereby providing further support for the linkage between the functional response and the requirement for MLCK activation. The MAPK kinase (MEK) inhibitor PD098059 inhibited phagocytosis, MLCK activity, and ERK2 activity by 80% to 90%. To directly link ERK activation to MLCK activation, ERK2 was immunoprecipitated from PMNLs after EIgG ingestion. The isolated ERK2 was incubated with PMNL cytosol as a source of unactivated MLCK and with MLCK substrate; under these conditions ERK2 activated MLCK, resulting in phosphorylation of the MLCK substrate or of the myosin light chain itself. Because MLCK activates myosin, we evaluated the effect of directly inhibiting myosin adenosine triphosphatase using 2,3-butanedione monoxime (BDM) and found that phagocytosis was inhibited by more than 90% but MLCK activity remained unaffected. These results are consistent with the interpretation that MEK activates ERK, ERK2 then activates MLCK, and MLCK activates myosin. MLCK activation is a critical step in the cytoskeletal changes resulting in pseudopod formation.


2004 ◽  
Vol 15 (10) ◽  
pp. 4457-4466 ◽  
Author(s):  
Eric Bind ◽  
Yelena Kleyner ◽  
Dorota Skowronska-Krawczyk ◽  
Emily Bien ◽  
Brian David Dynlacht ◽  
...  

Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.


1998 ◽  
Vol 18 (4) ◽  
pp. 1946-1955 ◽  
Author(s):  
Jun Xing ◽  
Jon M. Kornhauser ◽  
Zhengui Xia ◽  
Elizabeth A. Thiele ◽  
Michael E. Greenberg

ABSTRACT The mechanisms by which growth factor-induced signals are propagated to the nucleus, leading to the activation of the transcription factor CREB, have been characterized. Nerve growth factor (NGF) was found to activate multiple signaling pathways that mediate the phosphorylation of CREB at the critical regulatory site, serine 133 (Ser-133). NGF activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs), which in turn activate the pp90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases, all three members of which were found to catalyze CREB Ser-133 phosphorylation in vitro and in vivo. In addition to the ERK/RSK pathway, we found that NGF activated the p38 MAPK and its downstream effector, MAPK-activated protein kinase 2 (MAPKAP kinase 2), resulting in phosphorylation of CREB at Ser-133. Inhibition of either the ERK/RSK or the p38/MAPKAP kinase 2 pathway only partially blocked NGF-induced CREB Ser-133 phosphorylation, suggesting that either pathway alone is sufficient for coupling the NGF signal to CREB activation. However, inhibition of both the ERK/RSK and the p38/MAPKAP kinase 2 pathways completely abolished NGF-induced CREB Ser-133 phosphorylation. These findings indicate that NGF activates two distinct MAPK pathways, both of which contribute to the phosphorylation of the transcription factor CREB and the activation of immediate-early genes.


Sign in / Sign up

Export Citation Format

Share Document