IGF-I and insulin amplify IL-1β-induced nitric oxide and prostaglandin biosynthesis

1998 ◽  
Vol 274 (4) ◽  
pp. F673-F679 ◽  
Author(s):  
Zhonghong Guan ◽  
Shaavhree Y. Buckman ◽  
Lisa D. Baier ◽  
Aubrey R. Morrison

The inflammatory cytokine interleukin-1β (IL-1β) induces both cyclooxygenase-2 (Cox-2) and the inducible nitric oxide synthase (iNOS) with concomitant release of PGs and nitric oxide (NO) by glomerular mesangial cells. In our current studies, we determine whether insulin and IGF-I are involved in the signal transduction mechanisms resulting in IL-1β-induced NO and PGE2biosynthesis in renal mesangial cells. We demonstrate that both insulin and IGF-I increase IL-1β-induced Cox-2 and iNOS protein expression, which in turn enhance PGE2 and NO production. Our data also indicate that both insulin and IGF-I enhance IL-1β-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and SAPK activation. These findings implicate the possible role of the MAPK pathway in mediating the effects of insulin and IGF-I on the upregulation of cytokine-stimulated NO and PG biosynthesis. Together, our results indicate that IGF-I and insulin may function to modulate the renal inflammatory process.

2020 ◽  
Vol 21 (13) ◽  
pp. 4620 ◽  
Author(s):  
Che-Hwon Park ◽  
Seon-Young Min ◽  
Hye-Won Yu ◽  
Kyungmin Kim ◽  
Suyeong Kim ◽  
...  

Apigenin (4′,5,7-trihydroxyflavone, flavonoid) is a phenolic compound that is known to reduce the risk of chronic disease owing to its low toxicity. The first study on apigenin analyzed its effect on histamine release in the 1950s. Since then, anti-mutation and antitumor properties of apigenin have been widely reported. In the present study, we evaluated the apigenin-mediated amelioration of skin disease and investigated its applicability as a functional ingredient, especially in cosmetics. The effect of apigenin on RAW264.7 (murine macrophage), RBL-2H3 (rat basophilic leukemia), and HaCaT (human immortalized keratinocyte) cells were analyzed. Apigenin (100 μM) significantly inhibited nitric oxide (NO) production, cytokine expression (interleukin (IL)-1β, IL6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase [iNOS]), and phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) in RAW264.7 cells. Apigenin (30 μM) also inhibited the phosphorylation of signaling molecules (Lyn, Syk, phospholipase Cγ1, ERK, and JNK) and the expression of high-affinity IgE receptor FcεRIα and cytokines (tumor necrosis factor (TNF)-α, IL-4, IL-5, IL-6, IL-13, and COX-2) that are known to induce inflammation and allergic responses in RBL-2H3 cells. Further, apigenin (20 μM) significantly induced the expression of filaggrin, loricrin, aquaporin-3, hyaluronic acid, hyaluronic acid synthase (HAS)-1, HAS-2, and HAS-3 in HaCaT cells that are the main components of the physical barrier of the skin. Moreover, it promoted the expression of human β-defensin (HBD)-1, HBD-2, HBD-3, and cathelicidin (LL-37) in HaCaT cells. These antimicrobial peptides are known to play an important role in the skin as chemical barriers. Apigenin significantly suppressed the inflammatory and allergic responses of RAW264.7 and RBL cells, respectively, and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases. Apigenin could also be used to improve the functions of the physical and chemical skin barriers and to alleviate psoriasis, acne, and atopic dermatitis.


2017 ◽  
Vol 43 (2) ◽  
pp. 540-552 ◽  
Author(s):  
Hany H. Arab ◽  
Samir A. Salama ◽  
Tamer M. Abdelghany ◽  
Hany A. Omar ◽  
El-Shaimaa A. Arafa ◽  
...  

Background/Aims: Camel milk (CM) has shown beneficial anti-inflammatory actions in several experimental and clinical settings. So far, its effect on rheumatoid arthritis (RA) has not been previously explored. Thus, the current work aimed to evaluate the effects of CM in Adjuvant-induced arthritis and air pouch edema models in rats, which mimic human RA. Methods: CM was administered at 10 ml/kg orally for 3 weeks starting on the day of Freund’s adjuvant paw inoculation. The levels of TNF-α and IL-10 were measured by ELISA while the protein expression of NF-κBp65, COX-2 and iNOS was detected by immunohistochemistry. The expression of MAPK target proteins was assessed by Western blotting. Results: CM attenuated paw edema, arthritic index and gait score along with dorsal pouch inflammatory cell migration. CM lowered the TNF-α and augmented the anti-inflammatory IL-10 levels in sera and exudates of arthritic rats. It also attenuated the expression of activated NF-κBp65, COX-2 and iNOS in the lining of the dorsal pouch. Notably, CM inhibited the MAPK pathway signal transduction via lowering the phosphorylation of p38 MAPK, ERK1/2 and JNK1/2 in rat hind paws. Additionally, CM administration lowered the lipid peroxide and nitric oxide levels and boosted glutathione and total anti-oxidant capacity in sera and exudates of animals. Conclusion: The observed CM downregulation of the arthritic process may support the interest of CM consumption as an adjunct approach for the management of RA.


1999 ◽  
Vol 202 (6) ◽  
pp. 655-660
Author(s):  
A. Huwiler ◽  
J. Pfeilschifter

Nitric oxide (NO) has gained increased attention as a diffusible universal messenger that plays a crucial role in the pathogenesis of inflammatory and autoimmune diseases. Recently, we reported that exogenous NO is able to activate the stress-activated protein kinase (SAPK) cascade in mesangial cells. Here, we demonstrate that exposure of glomerular mesangial cells to compounds releasing NO, including spermine-NO and (Z)-1-?N-methyl-N-[6-(N-methylammoniohexyl)amino]diazen?-1-ium+ ++-1,2-diolate (MAHMA-NO), results in an activation of the stress-activated p38-mitogen-activated protein kinase (p38-MAPK) cascade as measured by the phosphorylation of the activator of transcription factor-2 (ATF2) in an immunocomplex kinase assay. Activation of the p38-MAPK cascade by a short stimulation (10 min) with the NO donor MAHMA-NO causes a large increase in ATF2 phosphorylation that is several times greater than that observed after stimulation with interleukin-1beta, a well-known activator of the p38-MAPK pathway. Time course studies reveal that MAHMA-NO causes rapid and maximal activation of p38-MAPK after 10 min of stimulation and that activation declines to basal levels within 60 min. The longer-lived NO donor spermine-NO causes a comparable rapid activation of the p38-MAPK pathway; however, the increased activation state of p38-MAPK was maintained for several hours before control values were reattained after 24 h of stimulation. Furthermore, the NO donors also activated the classical extracellular signal-regulated kinase (ERK) p44-MAPK cascade as shown by phosphorylation of the specific substrate cytosolic phospholipase A2 in an immunocomplex kinase reaction. Both MAHMA-NO and spermine-NO cause a rapid activation of p44-MAPK after 10 min of stimulation. Interestingly, there is a second delayed peak of p44-MAPK activation after 4–24 h of stimulation with NO donors. These results suggest that there is a differential activation pattern for stress-activated and mitogen-activated protein kinases by NO and that the integration of these signals may lead to specific cell responses.


2000 ◽  
Vol 279 (6) ◽  
pp. F1092-F1100 ◽  
Author(s):  
Jörg Schwöbel ◽  
Tina Fischer ◽  
Bettina Lanz ◽  
Markus Mohaupt

Angiotensin II (ANG II) and nitric oxide (NO) have contrasting vascular effects, yet both sustain inflammatory responses. We investigated the impact of ANG II on lipopolysaccharide (LPS)/interferon-γ (IFN)-induced NO production in cultured rat mesangial cells (MCs). LPS/IFN-induced nitrite production, the inducible form of nitric oxide synthase (NOS-2) mRNA, and protein expression were dose dependently inhibited by ANG II on coincubation, which was abolished on ANG II type 2 (AT2) receptor blockade by PD-123319. Homology-based RT-PCR verified the presence of AT1A, AT1B, and AT2 receptors. To shift the AT receptor expression toward the type 1 receptor, two sets of experiments were performed: LPS/IFN preincubation for 24 h was followed by 8-h coincubation with ANG II; or during 24-h coincubation of LPS/IFN and ANG II, dexamethasone was added for the last 6-h period. Both led to an amplified overall expression of NOS-2 protein and NO production that was inhibitable by actinomycin D in the first setup. Induced NO production was enhanced via the AT1 receptor; however, it was diminished via the AT2 receptor. In conclusion, induced NO production is negatively controlled by the AT2, whereas AT1 receptor stimulation enhanced NO synthesis in MCs. The overall NO availability depended on the onset of the inflammatory stimuli with respect to ANG II exposure and the available AT receptors.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Katriina Vuolteenaho ◽  
Anna Koskinen ◽  
Meiju Kukkonen ◽  
Riina Nieminen ◽  
Unto Päivärinta ◽  
...  

Obesity is an important risk factor for osteoarthritis (OA) in weight-bearing joints, but also in hand joints, pointing to an obesity-related metabolic factor that influences on the pathogenesis of OA. Leptin is an adipokine regulating energy balance, and it has recently been related also to arthritis and inflammation as a proinflammatory factor. In the present paper, the effects of leptin on human OA cartilage were studied. Leptin alone or in combination with IL-1 enhanced the expression of iNOS and COX-2, and production of NO,PGE2, IL-6, and IL-8. The results suggest that the effects of leptin are mediated through activation of transcription factor nuclear factorκB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway c-JunNH2-terminal kinase (JNK). Interestingly, inhibition of leptin-induced NO production with a selective iNOS inhibitor 1400 W inhibited also the production of IL-6, IL-8, andPGE2, and this was reversed by exogenously added NO-donor SNAP, suggesting that the effects of leptin on IL-6, IL-8, andPGE2production are dependent on NO. These findings support the idea of leptin as a factor enhancing the production of proinflammatory factors in OA cartilage and as an agent contributing to the obesity-associated increased risk for osteoarthritis.


2002 ◽  
Vol 13 (2) ◽  
pp. 313-321
Author(s):  
Ruisheng Liu ◽  
Antonio M. Gutiérrez ◽  
Avi Ring ◽  
A. Erik G. Persson

ABSTRACT. Receptor desensitization of G protein–coupled receptors (GPCRs), which occurs during short-term (seconds to minutes) exposure of cells to agonists, is mediated by phosphorylation and receptor endocytosis. Recycling of the receptors is a requisite for resensitization of the response. The mechanisms that attenuate signaling by GPCRs are of considerable importance to regulation of intercellular signaling and maintenance of their ability to respond to agonists over time. This study evaluates the effect of nitric oxide (NO) on P2Y nucleotide receptor resensitization in cultured rat glomerular mesangial cells. The NO production in cultured mesangial cells was measured by using confocal microscopy and the fluorescence NO indicator 4,5-diaminofluorescein diacetate (DAF-2 DA). l-arginine increased and Nω-nitro-l-arginine methyl ester (l-NAME) decreased NO production significantly (P < 0.05). Calcium responses to ATP were measured with fura-2 and imaging techniques. Repeated stimulation with ATP results in receptor desensitization that is characterized by lower calcium peak amplitude. Desensitization was induced by challenging mesangial cells with four consecutive 2-min pulses of ATP (0.1 mM) separated by 4.5-min control perfusions. Intracellular calcium concentration ([Ca2+]i) increase evoked by second, third, and fourth ATP challenges were about 40%, 26%, and 18% of the first one. The NO precursor, l-arginine (10 mM), and the NO donors, spermine-NONOate (500 μM) and sodium nitroprusside (SNP) (1 mM), were added before and during a fourth ATP challenge. Spermine-NONOate and l-arginine induced a recovery of the [Ca2+]i response to the fourth ATP challenge (P < 0.01 and 0.05, respectively). The NO synthase inhibitor, l-NAME (5 mM), applied along with ATP, was shown to enhance desensitization. 1H-(1,2,4)oxadiazolo(4,3-α)quinoxalin-1-one (ODQ, 30 μM), an inhibitor of guanylate cyclase, was used along with l-arginine, SNP, or spermine-NONOate. There was no significant difference with or without ODQ. Neither ODQ nor 8-Br-cGMP, an analog of cGMP, at different concentrations showed effects on ATP-stimulated [Ca2+]i. There was no elevation of [Ca2+]i when the cells were challenged by different concentrations (1 μM, 100 μM, 1 mM, 20 mM, and 30 mM) of caffeine, caffeine plus ATP (0.1 mM), and 4-chloro-3-ethylphenol (100 μM, 500 μM, and 1 mM), a new agonist of ryanodine receptors. The results indicate that NO can increase the P2Y receptor resensitization in rat glomerular mesangial cells by acting through a cGMP-independent pathway. No evidence was found for the existence of ryanodine-sensitive intracellular calcium stores in rat mesangial cells.


Sign in / Sign up

Export Citation Format

Share Document