scholarly journals Nitric Oxide Induces Resensitization of P2Y Nucleotide Receptors in Cultured Rat Mesangial Cells

2002 ◽  
Vol 13 (2) ◽  
pp. 313-321
Author(s):  
Ruisheng Liu ◽  
Antonio M. Gutiérrez ◽  
Avi Ring ◽  
A. Erik G. Persson

ABSTRACT. Receptor desensitization of G protein–coupled receptors (GPCRs), which occurs during short-term (seconds to minutes) exposure of cells to agonists, is mediated by phosphorylation and receptor endocytosis. Recycling of the receptors is a requisite for resensitization of the response. The mechanisms that attenuate signaling by GPCRs are of considerable importance to regulation of intercellular signaling and maintenance of their ability to respond to agonists over time. This study evaluates the effect of nitric oxide (NO) on P2Y nucleotide receptor resensitization in cultured rat glomerular mesangial cells. The NO production in cultured mesangial cells was measured by using confocal microscopy and the fluorescence NO indicator 4,5-diaminofluorescein diacetate (DAF-2 DA). l-arginine increased and Nω-nitro-l-arginine methyl ester (l-NAME) decreased NO production significantly (P < 0.05). Calcium responses to ATP were measured with fura-2 and imaging techniques. Repeated stimulation with ATP results in receptor desensitization that is characterized by lower calcium peak amplitude. Desensitization was induced by challenging mesangial cells with four consecutive 2-min pulses of ATP (0.1 mM) separated by 4.5-min control perfusions. Intracellular calcium concentration ([Ca2+]i) increase evoked by second, third, and fourth ATP challenges were about 40%, 26%, and 18% of the first one. The NO precursor, l-arginine (10 mM), and the NO donors, spermine-NONOate (500 μM) and sodium nitroprusside (SNP) (1 mM), were added before and during a fourth ATP challenge. Spermine-NONOate and l-arginine induced a recovery of the [Ca2+]i response to the fourth ATP challenge (P < 0.01 and 0.05, respectively). The NO synthase inhibitor, l-NAME (5 mM), applied along with ATP, was shown to enhance desensitization. 1H-(1,2,4)oxadiazolo(4,3-α)quinoxalin-1-one (ODQ, 30 μM), an inhibitor of guanylate cyclase, was used along with l-arginine, SNP, or spermine-NONOate. There was no significant difference with or without ODQ. Neither ODQ nor 8-Br-cGMP, an analog of cGMP, at different concentrations showed effects on ATP-stimulated [Ca2+]i. There was no elevation of [Ca2+]i when the cells were challenged by different concentrations (1 μM, 100 μM, 1 mM, 20 mM, and 30 mM) of caffeine, caffeine plus ATP (0.1 mM), and 4-chloro-3-ethylphenol (100 μM, 500 μM, and 1 mM), a new agonist of ryanodine receptors. The results indicate that NO can increase the P2Y receptor resensitization in rat glomerular mesangial cells by acting through a cGMP-independent pathway. No evidence was found for the existence of ryanodine-sensitive intracellular calcium stores in rat mesangial cells.

2000 ◽  
Vol 279 (6) ◽  
pp. F1092-F1100 ◽  
Author(s):  
Jörg Schwöbel ◽  
Tina Fischer ◽  
Bettina Lanz ◽  
Markus Mohaupt

Angiotensin II (ANG II) and nitric oxide (NO) have contrasting vascular effects, yet both sustain inflammatory responses. We investigated the impact of ANG II on lipopolysaccharide (LPS)/interferon-γ (IFN)-induced NO production in cultured rat mesangial cells (MCs). LPS/IFN-induced nitrite production, the inducible form of nitric oxide synthase (NOS-2) mRNA, and protein expression were dose dependently inhibited by ANG II on coincubation, which was abolished on ANG II type 2 (AT2) receptor blockade by PD-123319. Homology-based RT-PCR verified the presence of AT1A, AT1B, and AT2 receptors. To shift the AT receptor expression toward the type 1 receptor, two sets of experiments were performed: LPS/IFN preincubation for 24 h was followed by 8-h coincubation with ANG II; or during 24-h coincubation of LPS/IFN and ANG II, dexamethasone was added for the last 6-h period. Both led to an amplified overall expression of NOS-2 protein and NO production that was inhibitable by actinomycin D in the first setup. Induced NO production was enhanced via the AT1 receptor; however, it was diminished via the AT2 receptor. In conclusion, induced NO production is negatively controlled by the AT2, whereas AT1 receptor stimulation enhanced NO synthesis in MCs. The overall NO availability depended on the onset of the inflammatory stimuli with respect to ANG II exposure and the available AT receptors.


1998 ◽  
Vol 274 (4) ◽  
pp. F673-F679 ◽  
Author(s):  
Zhonghong Guan ◽  
Shaavhree Y. Buckman ◽  
Lisa D. Baier ◽  
Aubrey R. Morrison

The inflammatory cytokine interleukin-1β (IL-1β) induces both cyclooxygenase-2 (Cox-2) and the inducible nitric oxide synthase (iNOS) with concomitant release of PGs and nitric oxide (NO) by glomerular mesangial cells. In our current studies, we determine whether insulin and IGF-I are involved in the signal transduction mechanisms resulting in IL-1β-induced NO and PGE2biosynthesis in renal mesangial cells. We demonstrate that both insulin and IGF-I increase IL-1β-induced Cox-2 and iNOS protein expression, which in turn enhance PGE2 and NO production. Our data also indicate that both insulin and IGF-I enhance IL-1β-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and SAPK activation. These findings implicate the possible role of the MAPK pathway in mediating the effects of insulin and IGF-I on the upregulation of cytokine-stimulated NO and PG biosynthesis. Together, our results indicate that IGF-I and insulin may function to modulate the renal inflammatory process.


1999 ◽  
Vol 276 (3) ◽  
pp. F433-F441 ◽  
Author(s):  
Tetsuo Umino ◽  
Eiji Kusano ◽  
Shigeaki Muto ◽  
Tetsu Akimoto ◽  
Satoru Yanagiba ◽  
...  

The present study examined how arginine vasopressin (AVP) affects nitric oxide (NO) metabolism in cultured rat glomerular mesangial cells (GMC). GMC were incubated with test agents and nitrite, and intracellular cGMP content, inducible nitric oxide synthase (iNOS) mRNA, and iNOS protein were analyzed by the Griess method, enzyme immunoassay, and Northern and Western blotting, respectively. AVP inhibited lipopolysaccharide (LPS)- and interleukin-1β (IL-1β)-induced nitrite production in a dose- and time-dependent manner, with concomitant changes in cGMP content, iNOS mRNA, and iNOS protein. This inhibition by AVP was reversed by V1- but not by oxytocin-receptor antagonist. Inhibition by AVP was also reproduced on LPS and interferon-γ (IFN-γ). Protein kinase C (PKC) inhibitors reversed AVP inhibition, whereas PKC activator inhibited nitrite production. Although dexamethasone and pyrrolidinedithiocarbamate (PDTC), inhibitors of nuclear factor-κB, inhibited nitrite production, further inhibition by AVP was not observed. AVP did not show further inhibition of nitrite production with actinomycin D, an inhibitor of transcription, or cycloheximide, an inhibitor of protein synthesis. In conclusion, AVP inhibits LPS- and IL-1β-induced NO production through a V1 receptor. The inhibitory action of AVP involves both the activation of PKC and the transcription of iNOS mRNA in cultured rat GMC.


1998 ◽  
Vol 274 (3) ◽  
pp. F473-F480 ◽  
Author(s):  
Simon N. Waddington ◽  
Frederick W. K. Tam ◽  
H. Terence Cook ◽  
Victoria Cattell

Arginase shares a common substrate, l-arginine, with nitric oxide synthase (NOS). Both enzymes are active at inflammatory sites. To understand regulation of arginase and its relationship to nitric oxide (NO) production, we studied effects of N G-hydroxy-l-arginine (HOArg) and interleukin-4 (IL-4) on urea and[Formula: see text] synthesis by glomeruli during rat immune glomerulonephritis and compared these with macrophages and glomerular mesangial cells (MC). In nephritic glomeruli, elicited macrophages, and MC stimulated with IL-1 and adenosine 3′,5′-cyclic monophosphate agonists, increased arginase and induced NOS activity was found. Urea production was inhibited by HOArg and increased by IL-4. NO inhibition [ N G-monomethyl-l-arginine (l-NMMA)] increased arginase activity in nephritic glomeruli and macrophages but not MC.[Formula: see text] synthesis was inhibited byl-NMMA and IL-4. It was increased with HOArg under conditions of NO inhibition. In contrast, in normal glomeruli and basal MC, where there was no induced NO synthesis, IL-4 had no effect on arginase activity, whereas HOArg consistently reduced it in glomeruli only. Type II arginase (Arg II) mRNA was detected in normal glomeruli; nephritic glomeruli expressed both Arg I and Arg II mRNAs. This is the first demonstration of arginase modulation in glomeruli and MC and of the expression of arginase isoforms in glomeruli. The differential responses to two endogenous compounds generated by inflammation suggest this may be part of coordinated regulation of arginase and inducible NOS in immune injury, whereby arginase is inhibited during high-output NO production and stimulated with NO suppression. This, together with control of arginase and NOS isoforms, may be important in controlling the balance of inflammatory and repair mechanisms.


1994 ◽  
Vol 267 (1) ◽  
pp. F190-F195 ◽  
Author(s):  
H. Tsukahara ◽  
Y. Krivenko ◽  
L. C. Moore ◽  
M. S. Goligorsky

It has been hypothesized that fluctuations of the ionic composition in the interstitium of juxtaglomerular apparatus (JGA) modulate the function of extraglomerular mesangial cells (MC), thereby participating in tubuloglomerular feedback (TGF) signal transmission. We examined the effects of isosmotic reductions in ambient sodium concentration ([Na+]) and [Cl-] on cytosolic calcium concentration ([Ca2+]i) in cultured rat MC. Rapid reduction of [Na+] or [Cl-] in the bath induced a concentration-dependent rise in [Ca2+]i. MC are much more sensitive to decreases in ambient [Cl-] than to [Na+]; a decrease in [Cl-] as small as 14 mM was sufficient to elicit a detectable [Ca2]i response. These observations suggest that MC can be readily stimulated by modest perturbations of extracellular [Cl-]. Next, we examined whether activation of MC by lowered ambient [Cl-] influences cellular nitric oxide (NO) production. Using an amperometric NO sensor, we found that a 13 mM decrease in ambient [Cl-] caused a rapid, Ca2+/calmodulin-dependent rise in NO release from MC. This response was not inhibitable by dexamethasone, indicating the involvement of the constitutive rather than the inducible type of NO synthase in MC. In addition, the NO release was blunted by indomethacin pretreatment, suggesting that a metabolite(s) of cyclooxygenase regulates the activation of NO synthase in MC. Our findings that small perturbations in external [Cl-] stimulate MC to release NO, a highly diffusible and rapidly acting vasodilator, provide a possible mechanism to explain the transmission of the signal for the TGF response within the JGA.


1990 ◽  
Vol 258 (1) ◽  
pp. F162-F167 ◽  
Author(s):  
P. J. Shultz ◽  
A. E. Schorer ◽  
L. Raij

We have investigated whether endothelium-derived relaxing factor (EDRF) and nitric oxide (NO), a substance proposed to be one of the EDRFs, could elicit biochemical and biological responses in rat glomerular mesangial cells (MC). In wells with MC alone, guanosine 3',5'-cyclic monophosphate (cGMP) levels were 2.6 +/- 0.6 fmol/microgram protein, and bradykinin did not affect these levels, whereas in coincubation experiments with bovine aortic EC and rat MC, cGMP levels in MC increased to 44.6 +/- 21 fmol/micrograms protein after bradykinin stimulation (P less than 0.05). This effect was potentiated by superoxide dismutase and inhibited by hemoglobin and L-NG-monomethyl arginine, a specific inhibitor of EDRF synthesis. Increases in cGMP were also observed when MC were incubated directly with NO and were potentiated by superoxide dismutase and inhibited by hemoglobin. We also tested whether NO could inhibit angiotensin II (ANG II)-induced reductions in cross-sectional area (CSA) of MC. When MC were exposed to ANG II only, 65% of the cells underwent a significant reduction in CSA, as measured by digital image analysis. However, when MC were incubated with ANG II and NO, only 10% of cells responded (P less than 0.04). These studies demonstrate that EDRF and NO induce significant biochemical and functional responses in rat glomerular MC and suggest that communication between EC and MC may be important in regulation of glomerular function.


1991 ◽  
Vol 261 (4) ◽  
pp. F600-F606 ◽  
Author(s):  
P. J. Shultz ◽  
M. A. Tayeh ◽  
M. A. Marletta ◽  
L. Raij

Macrophages and certain tumor cell lines can be induced to synthesize nitric oxide (NO) from L-arginine after stimulation with lipopolysaccharide (LPS) or cytokines. In the present study, we have found that culture medium collected after 24 h from unstimulated rat mesangial cells (MC) contains 6.3 +/- 1.2 microM of NO3-/NO2- (the degradation products of NO). These levels were significantly increased when MC were incubated with LPS (10 micrograms/ml) for 24 h (23.9 +/- 4.1, P less than 0.05). The specific inhibitor of NO synthesis, NG-monomethyl-L-arginine (L-NMMA) completely inhibited LPS-stimulated production of NO3-/NO2-, confirming that the NO3-/NO2- was derived from NO within the MC. Recent studies suggest that endothelium-derived relaxing factor (EDRF) produced by vascular endothelium is also NO, and we have previously shown that both EDRF and NO stimulate increases in MC guanosine 3',5'-cyclic monophosphate (cGMP). Thus we sought to determine whether NO synthesized by the MC could affect cGMP levels within the same cells. After 24-h incubation with LPS (10 micrograms/ml), intracellular cGMP level within the MC was 706.3 +/- 197 (SE) compared with 40.5 +/- 7 fmol/micrograms protein in control MC incubated in media alone (P less than 0.01). The changes in cGMP in response to LPS were inhibited by greater than 90% by L-NMMA. Similar to LPS, incubation of MC with the cytokine gamma-interferon also increased NO3-/NO2- in the culture media and increased cGMP levels within MC. The induction of NO synthesis within MC and the concomitant stimulation of MC cGMP may be important in the modulation of the effects of endotoxemia, as well as inflammation, within the glomerulus.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1050
Author(s):  
Hyun-Ju Kim ◽  
Inamullah Khan ◽  
Adnan Shahidullah ◽  
Syed Muhammad Ashhad Halimi ◽  
Abdur Rauf ◽  
...  

Diospyrin, plant-derived bisnaphthoquinonoid, is known to have anticancer activity. However, pharmacological activity of diospyrin on viral infection is not well known. We investigated effects of diospyrin on macrophages induced by polyinosinic-polycytidylic acid (poly I:C), a mimic of double-stranded viral RNA. Various cytokines, intracellular calcium, nitric oxide (NO), phosphorylated p38 MAPK, and phosphorylated ERK1/2 as well as mRNA expressions of transcription factors were evaluated. Diospyrin significantly reduced NO production, granulocyte-macrophage colony-stimulating factor production, and intracellular calcium release in poly I:C-induced RAW 264.7. The phosphorylation of p38 MAPK and ERK1/2 was also significantly suppressed. Additionally, diospyrin inhibited mRNA levels of nitric oxide synthase 2, C/EBP homologous protein (CHOP), calcium/calmodulin dependent protein kinase II alpha, signal transducers and activators of transcription 1 (STAT1), STAT3, STAT4, Janus kinase 2, first apoptosis signal receptor, c-Jun, and c-Fos in poly I:C-induced RAW 264.7. Taken together, this study represents that diospyrin might have the inhibitory activity against viral inflammation such as excessive production of inflammatory mediators in poly I:C-induced RAW 264.7 via ER stress-induced calcium-CHOP pathway.


Author(s):  
Takuro Terada ◽  
Shigeyuki Tomita ◽  
Yoshihide Asaumi ◽  
Yoshinao Koshida ◽  
Nobuki Ishikawa ◽  
...  

Objective The right gastroepiploic artery (GEA) is a reliable conduit for coronary artery bypass grafting. Recently, ultrasonic skeletonization in graft harvesting has attracted attention as an alternative technique to increase the length and caliber size of grafts. The influence of GEA skeletonization using an ultrasonically activated device with that using an electrosurgical unit was compared from the viewpoint of production of nitric oxide (NO). Methods Fourteen pigs were used in this study. The GEA were harvested using an ultrasonically activated device (group ultrasonically activated device [USAD], n = 7) or electrocautery (group E, n = 7). Blood sampling was performed at the following three times from the distal end of the GEA: (1) preskeletonization, (2) pedicle, and (3) postskeletonization. Plasma NOx (NO metabolites) levels were measured by chemiluminescent assay. Moreover, in excised specimens, the expression of nitric oxide synthase was examined immunohistologically. Results In group USAD, the preskeletonization basal level of plasmaNOx in GEA was 25.7 ± 10.9 μmol/L, which then increased to 26.9 ± 10.5 μmol/L (pedicle) and 32.2 ± 12.1 μmol/L (postskeletonization). In group E, the preskeletonization basal plasma NOx level in GEA was 28.9 ± 11.4 μmol/L, which changed to 27.5 ± 8.9 μmol/L (pedicle) and 21.8 ± 8.3 μmol/L (postskeletonization). The results of multivariate analysis indicated that the patterns of changes in plasma NOx level were significantly different in both groups (P = 0.024). In group USAD, post hoc multiple comparison tests revealed a significant difference between preskeletonization and postskeletonization (P = 0.037). Conclusions Ultrasonically skeletonized GEA showed increased effective graft length, higher free flow capacity, and increased endothelial NO production than that prepared using an electrosurgical unit.


Sign in / Sign up

Export Citation Format

Share Document