Possible errors using esophageal balloon in determination of pressure-volume characteristics of the lung and thoracic cage

1959 ◽  
Vol 14 (4) ◽  
pp. 525-530 ◽  
Author(s):  
John H. Knowles ◽  
Suk Ki Hong ◽  
Hermann Rahn

The static pressure-volume curves of the lung, thoracic cage and total respiratory system were studied in the sitting, supine, prone and knee-elbow position in four subjects. The lung and thoracic-cage pressures were measured with the aid of an esophageal balloon and recorded on a water manometer. The analysis of these various components suggests that in the supine position the esophageal balloon is compressed by the mediastinal content, giving rise to an artifact in the recording of the lung pressure. If this artifact is taken into consideration, it would appear that the effect of posture on the compliance of the lung is negligible. Lung pressures calculated for various lung volumes during active breathing are compared with static values recorded on a water manometer. Submitted on December 19, 1958

1991 ◽  
Vol 71 (1) ◽  
pp. 294-299 ◽  
Author(s):  
A. Michels ◽  
K. Decoster ◽  
L. Derde ◽  
C. Vleurinck ◽  
K. P. Van de Woestijne

In 105 adults we investigated the influence of the body positions, sitting with respect to supine, on lung volumes and on the input resistance, (Rrs) and reactance (Xrs) of the respiratory system. Rrs and Xrs were measured between 2 and 26 Hz by means of a forced oscillation technique. Vital capacity (VC) and expiratory reserve volume (ERV) are smaller in the supine position; this reduction decreases with age and is less for ERV in male smokers than in nonsmokers. The Rrs values are larger in the supine position, and the slope of the Rrs-frequency curves tends to become less positive or negative, depending on sex, age, and smoking habits. Xrs decreases at lower frequencies. The changes in Rrs due to posture are larger in young smokers than in young nonsmokers. This is not explained by changes in ERV and may reflect changes in the intrinsic properties of the airways induced by smoking.


Author(s):  
Dr. Vishal Shamrao Patil ◽  
Dr. (Mrs.) Manisha V. Bhalsing

Lung function tests are useful in assessing the functional status of Respiratory system in both in physiological as well as pathological conditions. These are based on the measurement of volume of air breathed in and out in quite breathing & forced breathing. Air in lungs is classified in to two divisions’ lung volumes & lung capacities. Lung Capacities are the combination of two or more lung volumes. The concept of Rakt Dhatu & Vayu is important in case of respiration because Charaka says that pure blood provides the person with strength, luster & happy life because vital breath follows blood. It represents mechanism of oxygenated & deoxygenated blood & its relation with functioning capacity of Lungs. So In this article attempt has been made to review concepts regarding functions of Rakt Dhatu & Vayu to Establish Lung Function Capacity.


2020 ◽  
Author(s):  
Lorenzo Viola ◽  
Emanuele Russo ◽  
Marco Benni ◽  
Emiliano Gamberini ◽  
Alessandro Circelli ◽  
...  

Abstract Background. This study was conceived to provide systematic data about lung mechanics during early phases of CoVID-19 pneumonia, as long as to explore its variations during prone positioning. Methods. We enrolled four patients hospitalized in the Intensive Care Unit of “M. Bufalini” hospital, Cesena (Italy); after the positioning of an esophageal balloon, we measured mechanical power, respiratory system and transpulmonary parameters and arterial blood gases every 6 hours, just before decubitus change and 1 hour after prono-supination. Results. Both respiratory system and transpulmonary compliance and driving pressure confirmed the pseudo-normal respiratory mechanics of early CoVID-19 pneumonia (respectively, CRS 40.8 ml/cmH2O and DPRS 9.7 cmH2O; CL 53.1 ml/cmH2O and DPL 7.9 cmH2O). Interestingly, prone positioning involved a worsening in respiratory mechanical properties (CRS,SUP 56.3 ml/cmH2O and CRS,PR 41.5 ml/cmH2O – P 0.37; CL,SUP 80.8 ml/cmH2O and CL,PR 53.2 ml/cmH2O – P 0.23). Conclusions. Despite the severe ARDS pattern, respiratory system and lung mechanical properties during CoVID-19 pneumonia are pseudo-normal and tend to worsen during pronation. Trial registration. Restrospectively registered.


1990 ◽  
Vol 28 (3) ◽  
pp. 306-306
Author(s):  
Andreas Schulze ◽  
Peter Schaller ◽  
Jürgen Dinger ◽  
Dieter Gmyrek

2020 ◽  
Vol 128 (1) ◽  
pp. 168-177 ◽  
Author(s):  
S. Rutting ◽  
S. Mahadev ◽  
K. O. Tonga ◽  
D. L. Bailey ◽  
J. R. Dame Carroll ◽  
...  

Obesity is associated with reduced operating lung volumes that may contribute to increased airway closure during tidal breathing and abnormalities in ventilation distribution. We investigated the effect of obesity on the topographical distribution of ventilation before and after methacholine-induced bronchoconstriction using single-photon emission computed tomography (SPECT)-computed tomography (CT) in healthy subjects. Subjects with obesity ( n = 9) and subjects without obesity ( n = 10) underwent baseline and postbronchoprovocation SPECT-CT imaging, in which Technegas was inhaled upright and followed by supine scanning. Lung regions that were nonventilated (Ventnon), low ventilated (Ventlow), or well ventilated (Ventwell) were calculated using an adaptive threshold method and were expressed as a percentage of total lung volume. To determine regional ventilation, lungs were divided into upper, middle, and lower thirds of axial length, derived from CT. At baseline, Ventnon and Ventlow for the entire lung were similar in subjects with and without obesity. However, in the upper lung zone, Ventnon (17.5 ± 10.6% vs. 34.7 ± 7.8%, P < 0.001) and Ventlow (25.7 ± 6.3% vs. 33.6 ± 5.1%, P < 0.05) were decreased in subjects with obesity, with a consequent increase in Ventwell (56.8 ± 9.2% vs. 31.7 ± 10.1%, P < 0.001). The greater diversion of ventilation to the upper zone was correlated with body mass index ( rs = 0.74, P < 0.001), respiratory system resistance ( rs = 0.72, P < 0.001), and respiratory system reactance ( rs = −0.64, P = 0.003) but not with lung volumes or basal airway closure. Following bronchoprovocation, overall Ventnon increased similarly in both groups; however, in subjects without obesity, Ventnon only increased in the lower zone, whereas in subjects with obesity, Ventnon increased more evenly across all lung zones. In conclusion, obesity is associated with altered ventilation distribution during baseline and following bronchoprovocation, independent of reduced lung volumes. NEW & NOTEWORTHY Using ventilation SPECT-computed tomography imaging in healthy subjects, we demonstrate that ventilation in obesity is diverted to the upper lung zone and that this is strongly correlated with body mass index but is independent of operating lung volumes and of airway closure. Furthermore, methacholine-induced bronchoconstriction only occurred in the lower lung zone in individuals who were not obese, whereas in subjects who were obese, it occurred more evenly across all lung zones. These findings show that obesity-associated factors alter the topographical distribution of ventilation.


2017 ◽  
Vol 34 (3) ◽  
pp. 150-157 ◽  
Author(s):  
Lucille Jay ◽  
Laurent Zieleskiewicz ◽  
François-Pierrick Desgranges ◽  
Bérengère Cogniat ◽  
Marius Pop ◽  
...  

1984 ◽  
Vol 142 ◽  
pp. 251-267 ◽  
Author(s):  
C. Ducruet ◽  
A. Dyment

The static pressure-hole problem is investigated both theoretically and experimentally. The influence of all significant dimensionless parameters is brought to light. These parameters represent the effects of the boundary layer, of the velocity gradient and of the wall curvature. A partial linearization makes it possible to propose a formula of correction containing three influence functions which cannot be determined by the theory. A limited number of experiments on appropriate models leads to the determination of these functions in case of practical requirements. So, a method of correction is obtained, but only in incompressible flow. The previous formula has been verified in two complex flows. The importance of the correction on the pressure drag of a slender body is brought to light and the difficulties in the application on the method are emphasized.


Author(s):  
W. G. Cartwright

The flow in the rotors of three radial turbines, of differing peak efficiency, is analyzed using a streamline curvature method. The turbine of greatest efficiency is analyzed at both on- and off-design conditions; the other two turbines at the design point only. Comparison is made between the predictions of the calculation and the experimental determination of two features of the flow — the shroud static pressure distribution and the outlet velocity profile. Fair agreement with the shroud pressure is obtained at on-design conditions, but correlation with the exit velocity distribution is poor. Some improvement in the calculation of the exit profile is achieved when the analysis is modifed so as to allow for the experimentally observed angle of deviation at the blade trailing edge. Consideration is given to the ability of the analytical method to discriminate between turbines which prove experimentally to have high or low peak efficiency.


Sign in / Sign up

Export Citation Format

Share Document