Adaptation to the inhibitory effect of carbon monoxide inhalation on drug metabolism.

1973 ◽  
Vol 35 (5) ◽  
pp. 601-607 ◽  
Author(s):  
M R Montgomery ◽  
R J Rubin
Author(s):  
Hirokazu Chokki ◽  
Yuki Nishimura ◽  
Mariko Iwase ◽  
Norimitsu Kurata ◽  
Koichiro Shinya ◽  
...  

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
YiLin Ren ◽  
Martin A D'Ambrosio ◽  
Hong Wang ◽  
Jeffrey L Garvin ◽  
Oscar A Carretero

Tubuloglomerular feedback (TGF) is an autoregulatory mechanism of the renal microcirculation in which the macula densa (MD) senses NaCl concentration in the lumen of the nephron and sends a signal that controls glomerular filtration rate by constricting the afferent arteriole (Af-Art). We have shown that MD depolarization is sufficient for inducing TGF. Carbon monoxide (CO), either endogenous or exogenous, is known to inhibit TGF, at least in part via cGMP. However, whether cGMP-independent mechanisms are involved, and where in the TGF cascade CO exerts its inhibitory effect, remain unknown. Thus we hypothesize that CO, acting via both cGMP-dependent and -independent mechanisms, attenuates TGF by acting downstream from MD cell depolarization. In vitro , microdissected rabbit Af-Arts and their attached MD were simultaneously perfused and TGF was measured as the decrease in Af-Art diameter. Depolarization of the MD was induced by switching luminal KCl from 4 to 50 mM in the presence of the potassium ionophore valinomycin, while adding the CO-releasing molecule CORM-3 to the MD perfusate at non-toxic concentrations. CORM-3 blunted depolarization-induced TGF at a concentration of 50 μM, from 3.6±0.4 to 2.5±0.4 μm (P<0.01), and completely abolished it at a concentration of 100 μM, to 0.1±0.1 μm (P<0.001, n=6). Similar results were found with 100 μM CORM-3 when depolarization was induced by nystatin (3.0±0.2 vs. 0.4±0.2 μm, P <0.001, n=6). This indicates that CO inhibits TGF acting downstream from depolarization. When cGMP generation was blocked with the guanylate cyclase inhibitor LY-83583 (1 μM) added to the MD, CORM-3 no longer had an effect on depolarization-induced TGF at 50 μM (2.9±0.4 vs. 3.0±0.4 μm), but retained partial inhibitory effect on TGF at 100 μM (1.3±0.2 μm, P =0.02, n=9). This suggests that CO acts via cGMP at low concentrations, but additional mechanisms of action may be involved at higher concentrations. Finally, we confirmed that cGMP inhibits TGF downstream from MD depolarization by adding the degradation-resistant cGMP analog dibutyryl-cGMP (500 μM), which attenuated depolarization-induced TGF (from 3.9±0.5 to 0.6±0.2 μm, P <0.01, n=6). Our results could help explain the physiological role of CO in controlling the renal microcirculation.


2021 ◽  
Vol 14 (3) ◽  
pp. 232-232
Author(s):  
Dariush Minai-Tehrani ◽  
Saeed Minoui ◽  
Marzie Sepehre ◽  
Zohre Sharif-Khodai ◽  
Tooka Aavani

A typographical error appeared in the author’s name of the article entitled “Inhibitory Effect of Codeine on Sucrase Activity“ by Dariush Minai-Tehrani, Saeed Minoui, Marzie Sepehre, Zohre Sharif-Khodai, Tooka Aavani, Drug Metabolism Letters, 2009; 3(1): 58-60. [1]. Details of the error and a correction are provided here. The fourth author#039;s name in this article was misspelled. Hence it should be read as "Zohreh Sharifkhodaei" as per the request of the author. We regret the error and apologize to readers. The original article can be found online at: https://www.eurekaselect.com/93132/article Original: Zohre Sharif-Khodai Corrected: Zohreh Sharifkhodaei


2014 ◽  
Vol 60 (6) ◽  
pp. 407-415 ◽  
Author(s):  
Silvia Sancho Navarro ◽  
Ruxandra Cimpoia ◽  
Guillaume Bruant ◽  
Serge R. Guiot

Specific inhibitors such as 2-bromoethanesulfonate (BES) and vancomycin were employed in activity batch tests to decipher metabolic pathways that are preferentially used by a mixed anaerobic consortium (sludge from an anaerobic digester) to transform carbon monoxide (CO) into methane (CH4). We first evaluated the inhibitory effect of both BES and vancomycin on the microbial community, as well as the efficiency and stability of vancomycin at 35 °C, over time. The activity tests with CO2–H2, CO, glucose, acetate, formate, propionate, butyrate, methanol, and ethanol showed that vancomycin does not inhibit some Gram-negative bacteria, and 50 mmol/L BES effectively blocks CH4production in the sludge. However, when sludge was incubated with propionate, butyrate, methanol, or ethanol as the sole energy and carbon source, methanogenesis was only partially inhibited by BES. Separate tests showed that 0.07 mmol/L vancomycin is enough to maintain its inhibitory efficiency and stability in the population for at least 32 days at 35 °C. Using the inhibitors above, it was demonstrated that CO conversion to CH4is an indirect, 2-step process, in which the CO is converted first to acetate and subsequently to CH4.


2005 ◽  
Vol 202 (12) ◽  
pp. 1703-1713 ◽  
Author(s):  
Refaat A.F. Hegazi ◽  
Kavitha N. Rao ◽  
Aqila Mayle ◽  
Antonia R. Sepulveda ◽  
Leo E. Otterbein ◽  
...  

Heme oxygenase (HO)-1 and its metabolic product carbon monoxide (CO) play regulatory roles in acute inflammatory states. In this study, we demonstrate that CO administration is effective as a therapeutic modality in mice with established chronic colitis. CO administration ameliorates chronic intestinal inflammation in a T helper (Th)1-mediated model of murine colitis, interleukin (IL)-10–deficient (IL-10−/−) mice. In Th1-mediated inflammation, CO abrogates the synergistic effect of interferon (IFN)-γ on lipopolysaccharide-induced IL-12 p40 in murine macrophages and alters IFN-γ signaling by inhibiting a member of the IFN regulatory factor (IRF) family of transcription factors, IRF-8. A specific signaling pathway, not previously identified, is delineated that involves an obligatory role for HO-1 induction in the protection afforded by CO. Moreover, CO antagonizes the inhibitory effect of IFN-γ on HO-1 expression in macrophages. In macrophages and in Th1-mediated colitis, pharmacologic induction of HO-1 recapitulates the immunosuppressive effects of CO. In conclusion, this study begins to elucidate potential etiologic and therapeutic implications of CO and the HO-1 pathway in chronic inflammatory bowel diseases.


2017 ◽  
Vol 42 (6) ◽  
pp. 2377-2390 ◽  
Author(s):  
Rui-Gang Zhang ◽  
Chung-Yin Yip ◽  
Wing-Hung Ko

Background/Aims: Carbon monoxide (CO) is an important autocrine/paracrine messenger involved in a variety of physiological and pathological processes. This study aimed to investigate the regulatory role of CO released by CO-releasing molecule-2 (CORM-2) in a P2Y receptor-mediated calcium-signaling pathway in the human bronchial epithelial cell line, 16HBE14o-. Methods: Intracellular calcium ([Ca2+]i) was measured by fura-2 microspectrofluorimetry. D-myo-inositol-1-phosphate (IP1) levels and cGMP-dependent protein kinase activity (PKG) were also quantified. Results: The exogenous application of CORM-2 increased both intracellular Ca2+ and IP1, which are inhibited by U73122, a phospholipase C (PLC) inhibitor. In contrast, the P2Y2/P2Y4 receptor-mediated intracellular Ca2+ release and influx induced by UTP were inhibited in the presence of CORM-2. However, CORM-2 did not affect the store-operated Ca2+ entry (SOCE) induced by thapsigargin (Tg). Moreover, the inhibitory effect of CORM-2 on UTP-induced calcium increase could be attenuated by a soluble guanylyl cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ), or a Protein Kinase G (PKG) inhibitor, KT5823, suggesting the involvement of sGC/PKG signaling in this process. Conclusion: CORM-2 serves a dual role in modulating [Ca2+]i in 16HBE14o- cells. Thus, CO released by CORM-2 may act as a regulator of calcium homeostasis in human airway epithelia. These findings help further elucidate the function of CO in many physiological and pathological conditions.


2012 ◽  
Vol 303 (1) ◽  
pp. C92-C101 ◽  
Author(s):  
Melissa A. Riddle ◽  
Benjimen R. Walker

A novel vasodilatory influence of endothelial cell (EC) large-conductance Ca2+-activated K+ (BK) channels is present after in vivo exposure to chronic hypoxia (CH) and may exist in other pathological states. However, the mechanism of channel activation that results in altered vasoreactivity is unknown. Previously, we demonstrated that inhibition of either BK channels or heme oxygenase (HO) restores vasoconstrictor reactivity after CH. Additionally, administration of the scaffolding domain of caveolin (Cav)-1 inhibits EC BK activity and restores vasoconstrictor reactivity in this setting. These results led us to hypothesize that CH exposure results in a loss in Cav-1 inhibition of EC BK channels, resulting in their activation by HO-derived carbon monoxide (CO). Experiments were conducted on freshly dispersed aortic ECs from control and CH-exposed (barometric pressure: 380 mmHg for 48 h) rats. In electrophysiology experiments, outward currents were greater in cells from CH rats as well as from cells from control rats treated with the cholesterol-depleting agent methyl-β-cyclodextrin. These enhanced currents were returned to control by HO inhibition. Channel activity could be restored by the CO donor CO-releasing molecule (CORM)-2 during HO inhibition. Administration of the Cav-1 scaffolding domain eliminated BK currents in cells from CH rats, and current was not restored by the addition of CORM-2. Colocalization experiments in ECs from control and CH rats demonstrated an association between HO-2, Cav-1, and BK. We conclude that EC BK channel activity is HO dependent in the absence of the inhibitory effect of the Cav-1 scaffolding domain.


Sign in / Sign up

Export Citation Format

Share Document