An ultrasensitive isometric force transducer for single smooth muscle cell mechanics

1976 ◽  
Vol 40 (2) ◽  
pp. 243-246 ◽  
Author(s):  
P. G. Canaday ◽  
F. S. Fay

The principles of operation, design, and performance of a differential photooptical transducer of very high sensitivity are described. Useful range is 10–2,000 mugf with sufficiently low drift to allow recordings of contractile responses of isolated single smooth muscle cells. Comparison with several previous designs is presented.

1990 ◽  
Vol 96 (3) ◽  
pp. 581-601 ◽  
Author(s):  
D E Harris ◽  
D M Warshaw

In single smooth muscle cells, shortening velocity slows continuously during the course of an isotonic (fixed force) contraction (Warshaw, D.M. 1987. J. Gen. Physiol. 89:771-789). To distinguish among several possible explanations for this slowing, single smooth muscle cells were isolated from the gastric muscularis of the toad (Bufo marinus) and attached to an ultrasensitive force transducer and a length displacement device. Cells were stimulated electrically and produced maximum stress of 144 mN/mm2. Cell force was then reduced to and maintained at preset fractions of maximum, and cell shortening was allowed to occur. Cell stiffness, a measure of relative numbers of attached crossbridges, was measured during isotonic shortening by imposing 50-Hz sinusoidal force oscillations. Continuous slowing of shortening velocity was observed during isotonic shortening at all force levels. This slowing was not related to the time after the onset of stimulation or due to reduced isometric force generating capacity. Stiffness did not change significantly over the course of an isotonic shortening response, suggesting that the observed slowing was not the result of reduced numbers of cycling crossbridges. Furthermore, isotonic shortening velocity was better described as a function of the extent of shortening than as a function of the time after the onset of the release. Therefore, we propose that slowing during isotonic shortening in single isolated smooth muscle cells is the result of an internal load that opposes shortening and increases as cell length decreases.


1990 ◽  
Vol 63 (02) ◽  
pp. 291-297 ◽  
Author(s):  
Herm-Jan M Brinkman ◽  
Marijke F van Buul-Worteiboer ◽  
Jan A van Mourik

SummaryWe observed that the growth of human umbilical arterysmooth muscle cells was inhibited by the phospholipase A2 inhibitors p-bromophenacylbromide and mepacrine. Thesefindings suggest that fatty acid metabolism might be integrated in the control mechanism of vascular smooth muscle cell proliferation. To identify eicosanoids possibly involved in this process, we studied both the metabolism of arachidonic acid of these cells in more detail and the effect of certain arachidonic acid metabolites on smooth muscle cells growth. We found no evidence for the conversion of arachidonic acid via the lipoxygenase pathway. In contrast, arachidonic acid was rapidly converted via the cyclooxy-genase pathway. The following metabolites were identified: prostaglandin E2 (PGE2), 6-keto-prostaglandin F1α (6-k-PGF1α), prostaglandin F2α (PGF2α), 12-hydroxyheptadecatrienoic acid (12-HHT) and 11-hydroxyeicosatetetraenoic acid (11-HETE). PGE2 was the major metabolite detected. Arachidonic acid metabolites were only found in the culture medium, not in the cell. After synthesis, 11-HETE was cleared from the culture medium. We have previously reported that PGE2 inhibits the serum-induced [3H]-thymidine incorporation of growth-arrested human umbilical artery smooth muscle cells. Here we show that also 11-HETEexerts this inhibitory property. Thus, our data suggeststhat human umbilical artery smooth muscle cells convert arachidonic acid only via the cyclooxygenase pathway. Certain metabolites produced by this pathway, including PGE2 and 11-HETE, may inhibit vascular smooth muscle cell proliferation.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Sara McCurdy ◽  
Yvonne Baumer ◽  
Franz Hess ◽  
William A Boisvert

Smooth muscle cells (SMC) are known to migrate and proliferate to form a stabilizing fibrous cap that encapsulates atherosclerotic plaques. It has been shown that CD98hc, a transmembrane protein with a known role in amino acid transport and integrin signaling, is involved in proliferation and survival of various cell types including SMC. Based on these data, we hypothesized that CD98hc deficiency selectively in SMC would have pathogenic effects on atherosclerosis development and plaque composition. To test this, we utilized mice with SMC-specific deletion of the CD98hc ( CD98hc fl/fl SM22Cre + ) to determine the effects of CD98hc deficiency on SMC function in the context of atherosclerosis. We performed in vitro proliferation and survival/apoptosis assays to investigate the role of CD98hc in the proliferation and survival of primary mouse aortic vascular smooth muscle cells. We found that VSMC isolated from whole aortas of CD98hc -/- animals displayed approximately 60% reduced cell counts compared to control (41 ± 8.2% of control) after 5 days in culture. EdU assays in vivo showed a defect in the ability of CD98hc -/- SMC to proliferate, with 25% reduction in EdU-positive VSMC compared to controls (2.3 ± 0.2% vs 3 ± 0.2%). In addition, caspase-3 staining of SMC in vitro displayed a 41% increase in propensity of CD98hc -/- SMC to undergo apoptosis compared to controls (7.9 ± 0.6% vs 5.6 ± 0.5%). Furthermore, the absence of CD98hc in SMC caused a sharp increase in phosphorylated p-38, which was partially abrogated towards control levels when the cells were treated with PDGF-BB to induce proliferation. Long-term atherosclerosis study using SMC-CD98hc -/- /LDLR -/- mice showed that atherosclerotic plaque morphology was altered with increased necrotic core area (25.8 ± 1.9% vs 10.9 ± 1.6% necrotic core area per plaque area) due to a reduction in infiltration of SMC within the plaque (2.1 ± 0.4% vs 4.3 ± 0.4% SM22α positive area per plaque area) compared to control LDLR -/- mice. These data support an important role for CD98hc and its regulation of p-38 MAP kinase signaling in aortic vascular smooth muscle cell proliferation and survival. We conclude that CD98hc is critical for the formation of fibrous cap that is important in maintaining the stability of atherosclerotic plaque.


2017 ◽  
Vol 42 (6) ◽  
pp. 2569-2581 ◽  
Author(s):  
Zengxian Sun ◽  
Xiaowei Nie ◽  
Shuyang Sun ◽  
Shumin Dong ◽  
Chunluan Yuan ◽  
...  

Background/Aims: Increasing evidence has demonstrated a significant role of long non-coding RNAs (lncRNAs) in diverse biological processes, and many of which are likely to have functional roles in vascular remodeling. However, their functions in pulmonary arterial hypertension (PAH) remain largely unknown. Pulmonary vascular remodeling is an important pathological feature of PAH, leading to increased vascular resistance and reduced compliance. Pulmonary artery smooth muscle cells (PASMCs) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of PASMCs function. Herein, we determined whether long noncoding RNA–maternally expressed gene 3 (MEG3) was involved in PAH-related vascular remodeling. Methods: The arterial wall thickness was examined by hematoxylin and eosin (H&E) staining in distal pulmonary arteries (PAs) isolated from lungs of healthy volunteers and PAH patients. The expression level of MEG3 was analyzed by qPCR. The effects of MEG3 on human PASMCs were assessed by cell counting Kit-8 assay, BrdU incorporation assay, flow cytometry, scratch-wound assay, immunofluorescence, and western blotting in human PASMCs. Results: We revealed that the expression of MEG3 was significantly downregulated in lung and PAs of patients with PAH. MEG3 knockdown affected PASMCs proliferation and migration in vitro. Moreover, inhibition of MEG3 regulated the cell cycle progression and made more smooth muscle cells from the G0/G1 phase to the G2/M+S phase and the process could stimulate the expression of PCNA, Cyclin A and Cyclin E. In addition, we found that the p53 pathway was involved in MEG3–induced smooth muscle cell proliferation. Conclusions: This study identified MEG3 as a critical regulator in PAH and demonstrated the potential of gene therapy and drug development for treating PAH.


2011 ◽  
Vol 300 (6) ◽  
pp. H2088-H2095 ◽  
Author(s):  
Guo Hua Liang ◽  
Adebowale Adebiyi ◽  
M. Dennis Leo ◽  
Elizabeth M. McNally ◽  
Charles W. Leffler ◽  
...  

Hydrogen sulfide (H2S) is a gaseous signaling molecule that appears to contribute to the regulation of vascular tone and blood pressure. Multiple potential mechanisms of vascular regulation by H2S exist. Here, we tested the hypothesis that piglet cerebral arteriole smooth muscle cells generate ATP-sensitive K+ (KATP) currents and that H2S induces vasodilation by activating KATP currents. Gas chromatography/mass spectrometry data demonstrated that after placing Na2S, an H2S donor, in solution, it rapidly (1 min) converts to H2S. Patch-clamp electrophysiology indicated that pinacidil (a KATP channel activator), Na2S, and NaHS (another H2S donor) activated K+ currents at physiological steady-state voltage (−50 mV) in isolated cerebral arteriole smooth muscle cells. Glibenclamide, a selective KATP channel inhibitor, fully reversed pinacidil-induced K+ currents and partially reversed (∼58%) H2S-induced K+ currents. Western blot analysis indicated that piglet arterioles expressed inwardly rectifying K+ 6.1 (Kir6.1) channel and sulfonylurea receptor 2B (SUR2B) KATP channel subunits. Pinacidil dilated pressurized (40 mmHg) piglet arterioles, and glibenclamide fully reversed this effect. Na2S also induced reversible and repeatable vasodilation with an EC50 of ∼30 μM, and this effect was partially reversed (∼55%) by glibenclamide. Vasoregulation by H2S was also studied in pressurized resistance-size cerebral arteries of mice with a genetic deletion in the gene encoding SUR2 (SUR2 null). Pinacidil- and H2S-induced vasodilations were smaller in arterioles of SUR2 null mice than in wild-type controls. These data indicate that smooth muscle cell KATP currents control newborn cerebral arteriole contractility and that H2S dilates cerebral arterioles by activating smooth muscle cell KATP channels containing SUR2 subunits.


2003 ◽  
Vol 94 (4) ◽  
pp. 1403-1409 ◽  
Author(s):  
A. Cogo ◽  
G. Napolitano ◽  
M. C. Michoud ◽  
D. Ramos Barbon ◽  
M. Ward ◽  
...  

Although it is well known that hypoxemia induces pulmonary vasoconstriction and vascular remodeling, due to the proliferation of both vascular smooth muscle cells and fibroblasts, the effects of hypoxemia on airway smooth muscle cells are not well characterized. The present study was designed to assess the in vitro effects of hypoxia (1 or 3% O2) on rat airway smooth muscle cell growth and response to mitogens (PDGF and 5-HT). Cell growth was assessed by cell counting and cell cycle analysis. Compared with normoxia (21% O2), there was a 42.2% increase in the rate of proliferation of cells exposed to 3% O2 (72 h, P = 0.006), as well as an enhanced response to PDGF (13.9% increase; P = 0.023) and to 5-HT (17.2% increase; P = 0.039). Exposure to 1% O2 (72 h) decreased cell proliferation by 21.0% ( P = 0.017) and reduced the increase in cell proliferation induced by PGDF and 5-HT by 16.2 and 15.7%, respectively ( P = 0.019 and P = 0.011). A significant inhibition in hypoxia-induced cell proliferation was observed after the administration of bisindolylmaleimide GF-109203X (a specific PKC inhibitor) or downregulation of PKC with PMA. Pretreatment with GF-109203X decreased proliferation by 21.5% ( P = 0.004) and PMA by 31.5% ( P = 0.005). These results show that hypoxia induces airway smooth muscle cell proliferation, which is at least partially dependent on PKC activation. They suggest that hypoxia could contribute to airway remodeling in patients suffering from chronic, severe respiratory diseases.


2003 ◽  
Vol 99 (3) ◽  
pp. 646-651 ◽  
Author(s):  
Jingui Yu ◽  
Koji Ogawa ◽  
Yasuyuki Tokinaga ◽  
Yoshio Hatano

Background The Rho/Rho-kinase signaling pathway plays an important role in mediating Ca2+ sensitization of vascular smooth muscle. The effect of anesthetics on Rho/Rho-kinase-mediated vasoconstriction has not been determined to date. This study is designed to examine the possible inhibitory effects of sevoflurane on the Rho/Rho-kinase pathway by measuring guanosine 5'-[gamma-thio]triphosphate (GTP gamma S)-stimulated contraction and translocation of RhoA (one of the three Rho subtypes) and Rock-2 (one of the two Rho-kinase subtypes) from the cytosol to the membrane in rat aortic smooth muscle. Methods GTP gamma S-induced contraction of rat aortic endothelium-denuded rings was measured using an isometric force transducer, and GTP gamma S-stimulated membrane translocation of RhoA and Rock-2 in smooth muscle cells was detected with Western blotting in the presence and absence of sevoflurane. Results GTP gamma S (10(-4) m) induced a sustained contraction, which was significantly inhibited by the Rho-kinase inhibitor, Y27632 (3 x 10(-6) m). Before treatment with GTP gamma S, RhoA and Rock-2 were detected primarily in the cytosolic fraction. GTP gamma S (10(-4) m) stimulated the translocation of RhoA and Rock-2 from the cytosol to the membrane, which was sustained for more than 60 min. Sevoflurane (1.7, 3.4, and 5.1%) concentration dependently inhibited the GTP gamma S-induced constriction of rat aortic smooth muscle with a reduction of constriction of 52-75% (P < 0.01, n = 8), and attenuated the translocation of RhoA and Rock-2 by 31-66% and 34-78%, respectively (P < 0.05-0.01, respectively; n = 4). Conclusion The current findings show that sevoflurane depresses the GTP gamma S-stimulated contraction and translocation of both Rho and Rho-kinase from the cytosol in a concentration-dependent manner, indicating that sevoflurane is able to inhibit vasoconstriction mediated by the Rho/Rho-kinase pathway in rat aortic smooth muscle.


2018 ◽  
Vol 125 (4) ◽  
pp. 1090-1096 ◽  
Author(s):  
Alan L. James ◽  
Peter B. Noble ◽  
Su-Ann Drew ◽  
Thais Mauad ◽  
Tony R. Bai ◽  
...  

In asthma, it is unclear if the airway smooth muscle cells proliferate more or are increased at the onset of asthma and remain stable. This study aimed to compare smooth muscle cell proliferation in individuals with and without asthma and correlate proliferation rates with cell size and number and with granulocytic airway inflammation. Postmortem airway sections were labeled with proliferating cell nuclear antigen (PCNA) and percent positive muscle cells calculated. On the same sections, smooth muscle cell size and number and the number of eosinophils and neutrophils were estimated and compared in cases of nonfatal ( n = 15) and fatal ( n = 15) asthma and control subjects ( n = 15). The %PCNA+ muscle cells was not significantly different in fatal (29.4 ± 7.7%, mean ± SD), nonfatal asthma (28.6 ± 8.3%), or control subjects (24.6 ± 6.7%) and not related to mean muscle cell size ( r = 0.09), number ( r = 0.36), thickness of the muscle layer ( r = 0.05), or eosinophil numbers ( r = 0.04) in the asthma cases. These data support the hypothesis that in asthma the increased thickness of the smooth muscle layer may be present before or at the onset of asthma and independent of concurrent granulocytic inflammation or exacerbation. NEW & NOTEWORTHY There is debate regarding the origins of the increased airway smooth muscle in asthma. It may be independent of inflammation or arise as a proliferative response to inflammation. The present study found no increase in the proportion of proliferating smooth muscle cells in asthma and no relation of proliferation to numbers of airway smooth muscle cells or inflammation. These results support a stable increase in smooth muscle in asthma that is independent of airway inflammation.


2018 ◽  
Vol 45 (3) ◽  
pp. 1051-1060 ◽  
Author(s):  
Peixi Liu ◽  
Yaying Song ◽  
Yingjie Zhou ◽  
Yingjun Liu ◽  
Tianming Qiu ◽  
...  

Background/Aims: Cerebral aneurysm growth is characterized by continuous structural weakness of local smooth muscle cells, though the mechanism is unclear. In this study, we examine protein changes in cerebral aneurysm and human brain vascular smooth muscle cells after cyclic mechanical stretch. We further explore the relationship between the smooth muscle cell changes and reductions in the levels of collagen types IV and VI. Methods: Saccular cerebral aneurysms (n=10) were collected, and temporal artery samples were used as controls. Quantitative proteomics were analyzed and histopathological changes were examined. Smooth muscle cells were cultured in a flexible silicone chamber and subjected to 15% cyclic mechanical stretch. The effect of stretch on the cell viability, function, gene and protein expression were further studied for the understanding the molecular mechanism of aneurysm development. Results: Proteomics analysis revealed 92 proteins with increased expression and 88 proteins with decreased expression compared to the controls (p<0.05). KEGG pathway analysis showed that the change in focal adhesion and extracellular matrix-receptor interaction, suggesting the involvement of collagen type IV and VI. The aneurysm tissue exhibited fewer smooth muscle cells and lower levels of collagen type IV and VI. Human brain vascular smooth muscle cell culture showed spindle-like cells and obvious smooth muscle cell layer. Cell proteomics analysis showed that decreased expression of 118 proteins and increased expression of 32 proteins in smooth muscle cells after cyclic mechanical stretch. KEGG pathway analysis indicated that focal adhesion and ECM-receptor interaction were involved. After cyclic mechanical stretch, collagen type IV and IV expression were decreased. Moreover, the stretch induced MMP-1 and MMP-3 expression elevation. Conclusion: We demonstrated that collagen type IV and VI were decreased in cerebral aneurysms and continuous cyclic mechanical stretch induced smooth muscle cell changes. Smooth muscle cell protection provides an additional therapeutic option to prevent the growth of cerebral aneurysms.


Sign in / Sign up

Export Citation Format

Share Document